LO01 — Introduction and Set-based Inference

AIMA4e: Ch 6.1; Optional: Ch 1,2

6.4110 Spring 2026

What you should know after this lecture

® Basic logistics of 6.4110 Spring 2026
The Rational-Agent view of Al

Agent domains and where to find them

Inference with set-based uncertainty

¢ Constraint-satisfaction problem formulation
® Backtracking search

6.4110 Spring 2026

6.4110 Course staff

¢ Leslie Kaelbling (1pk@mit.edu)

¢ Anushka Aggarwal (UTA) (anushka6@mit.edu)
¢ Sunshine Jiang (GTA) (sunsh16e@nmit.edu)

¢ David Koplow (GTA) (dkoplow@nmit.edu)

® Alicia Lin (UTA) (ayl27@mit.edu)

¢ Divya Shyamal (GTA) (dshyamal@nmit.edu)

¢ Ellery Stahler (GTA) (ellerys@mit.edu)

¢ Tiffany Wang (UTA) (twangst@mit.edu)

¢ Ephraim Wu (UTA) (filbertw@mit.edu)

6.4110 Spring 2026

6.4110 Course logistics

Lecture: M, W 11 - 12:30

Problem session: F 11 —12: detailed worked examples, questions
answered

Calendar on cat-soop: https://airr.mit.edu
Piazza: Ask all questions here. Can be private to staff.

e Exams:

® 3in-class quizzes: Wed Feb 25, Wed March 18, Mon April 27

® Final exam scheduled by registrar
Homework: Weekly via cat-soop due Mondays at midnight
A score of 75% on HW will give you 100% of the HW grade
component; no further credit for doing more; you decide what is
most helpful to your understanding

5 mini-projects: More open-ended, submit written answers on
Gradescope

Collaboration: Homework and MPs are for learning; fine to
study together, use Al, but be sure to answer independently

More info (grading, extensions, office hours) on cat-soop

6.4110 Spring 2026 4

Course content

® Prereqgs:

® Probability (discrete and continuous)
¢ Algorithms and Python (you can confidently go from pseudo-code
to implementation and debug systematically)

¢ Focus on knowledge representation and reasoning methods of Al

¢ Complementary to machine learning

6.4110 Spring 2026 5

We like books!

o Artificial Intelligence: A Modern Approach (AIMA4e),
Russell and Norvig aima.cs.berkeley.edu

o Algorithms for Decision Making, (KAlg),
Kochenderfer algorithmsbook.com

6.4110 Spring 2026

Agents

“Agentic AI” can mean
Dbser V. o o This
action .

® Systems with
subcomponents that
are themselves

w o(\
“agents”

® agent: program w1th an ongoing feedback connection to an
external environment (e.g., robot, smart house, Siri, banking
advisor)

® generally 7: (O, A)* — A is a program with “state” or
“memory” that maps the history of actions and observations to
the next action

6.4110 Spring 2026 7

Policies for agents

How can we (engineers or nature) find a good policy for an agent?

A policy is allowed to have memory—it could perform learning or
search or solve differential equations or be made out of rubber bands.
Anything (physically realizable) is fair as long as it maps histories of
observations into the next action.

® Assume we have a specification (or a lot of examples) of a
distribution of worlds where our agent is supposed to operate

® Assume also an objective function that measures how well the
policy is performing

® Our job as engineers is to find the best policy, in expectation over
possible environments, for this agent. But, how?

6.4110 Spring 2026 8

How to design policies for agents?

1. Be really smart, think hard, and write a program.
2. Systems-level “offline” rational design
® Write down space of solutions
® Write down objective function
® Use search algorithm to find good solution
Most applications of robot/agent learning fit here
3. Design of agent that is, itself, rational “online”
® Be somewhat smart and construct a program for a rational agent
that:
® represents its knowledge about the environment and
® reasons about what actions to take

6.4110 Spring 2026

Rational agents

Principle of rationality: Select actions that will maximize expected

future utility
® expected: take expectations over uncertainty about current
environment state and/or outcomes of actions

¢ future: will consider one-step, finite, and infinite future horizons

¢ utility: Assume the agent has a scalar measure of utility or
desirability of states of the external environment

Rationality is not the same as:
® omniscience or clairvoyance

® success

6.4110 Spring 2026 10

Rational agent architecture

Decompose into two main components, connected by “belief”:

® belief: the agent’s knowledge about the state of the external
world (can be a point estimate, a set, a distribution)

¢ inference: algorithm for taking the history of actions and
observations and computing a belief

¢ action selection: algorithm for selecting the next action, given
current belief

6.4110 Spring 2026

Connections to learning-based systems

¢ Chain-of-thought and tree-of-thought, etc., encourage LLMs to
do some informal test-time “inference”

¢ Combining search with learned policies is key to state-of-the-art
game-playing systems (A*, MCTS, game trees, which we will
study)

¢ Alpha-Geometry nearly IMO Gold standard by using a formal
reasoning engine as a component (Horn-clause proof, which we
will study)

e “Agentic” Al systems often use LLMs to select actions in an
external world (e.g., buy/sell transactions) based on history of
previous inputs and actions

6.4110 Spring 2026 12

An agent’s model of its environment

This is the most general case—we’ll consider some simplifications
® §: set of world states
® A': set of actions of the agent

® O : set of possible observations the agent can make

P(St+1]St, A¢) : transition model : distribution over the world
state at time t + 1 given the world state at time t and the action
taken by the agent at time t

P(O¢ | S¢) : observation model : distribution over observations
the agent might make at time t given the world state at time t

“All models are wrong, but some are useful.” — George Box

6.4110 Spring 2026

Some properties of world models

e fully versus partially observable: agent is not certain about
current state s

e discrete versus continuous: states, actions, observations, time

® static versus dynamic: can world state change while agent is
“thinking?”

® episodic versus sequential: important for framing some learning
problems

® deterministic versus stochastic: transitions and/or observations

¢ single versus multiple agents: connections to game theory

6.4110 Spring 2026 14

Representation and reasoning

® Representation: information stored in a computer—specific to
the problem at hand
® syntax: a “language” for encoding information in a computer
® semantics: an intended relationship between a piece of syntax
inside the machine and the state of the world outside the machine

® Reasoning: (inference) semantics-preserving manipulation of a
syntactic representation—general-purpose, domain-independent

® Given observations and prior knowledge, make conclusions about
the world state and, from there, about which action to select.
® Planning, specifically, is reasoning about action sequences.

“All our knowledge begins with the senses, proceeds then to the
understanding, and ends with reason. There is nothing higher than
reason.” —Kant

6.4110 Spring 2026

Compositional representation

A compositional representation has:

® syntax that is formed from a small set of primitive components
and a set of rules for putting them together

® semantics: meaning of a the whole representation can be formed
by combining meanings of the components

“The infinite use of finite means.” —Alexander von Humboldt, on

language

6.4110 Spring 2026 16

Representation and reasoning

Knowing some information about:
® Current world state
® Transition model
¢ Objective
Infer one or more of:
® Some aspect of world state

® What action to take next

Methods depend on
¢ How much information is known about current and future states

® Representational method

deterministic/ | path search IW planning _
full information MCTS constraint sat PDDL planning
inistit conformant; ropositional
"°:tidle.‘ef'm'"'s:.'°/ conditional | P p‘ogic FOND planning | first-order logic
partial information (il
‘ ili continuous
n probabilistic o
robabilistic MDPs prob graphical relational probabilistic
P POMDPs models logic
models discrete
atomic factored relational first order 17

6.4110 Spring 2026

Representation styles

How do we describe a state?
® atomic: s44 (element of some enumeration)
¢ factored: (4,5.2," hippo’) (vector of attributes); embedding
vector
¢ relational: {bigger(o1, 02), resting(oz, 02), size(o1) = 3.2}
(set of properties and relations on “objects”; also, interpretable as
a graph)
e first-order: all the bacteria in the jar are dead
Vx.bacterium(x) N in(x, jar) — dead(x)
Different representations offer different opportunities for

® Expressing partial information

® Generalization

6.4110 Spring 2026 18

Connections to machine learning

Machine learning is everywhere! Probably most of you have studied
it in some form. Many connections to what we will be studying:

¢ Learning the models / “knowledge” that our search or inference
algorithms operate on

® Learn heuristics or other search control information to speed up
inference and planning

¢ Learn problem-specific functions for quickly computing
solutions to a space of common queries

Trade-offs between model-based and model-free methods
® Model-based often generalizes much more effectively
® Model-free methods not hampered by poor choices of model

6.4110 Spring 2026 19

Course outline

1. Inference
1.1 Enumerative, factored, set-based belief
1.2 Enumerative, factored, probabilistic belief
(Propositional and first-order logic belief) — later
2. Action selection
2.1 Exact belief

2.1.1 Deterministic dynamics (path-search problems)
2.1.2 Stochastic dynamics (MDPs)

2.2 Uncertain belief

2.2.1 Deterministic or set-based dynamics and observations
2.2.2 Stochastic dynamics and observations (POMDPs)

2.3 Other agents: game theory
3. Formal proof in propositional and first-order logic

6.4110 Spring 2026

20

Factored states and information

Factored, discrete states
Factored “observations” as constraints

Inference about state based on certain observations
® State space is factored into a set of state variables

® Observations are constraints on (pieces of information about) the
values of those state variables

® Our objective is to figure out one or more possible states that are
consistent with the observations.

Inference doesn’t increase our information about the underlying
state—just processes it into a more useful form

6.4110 Spring 2026 21

Constraint-satisfaction problem: formal definition

® X is a set of variables {X1,..., X}

® D is a set of domains {D+, ..., Dy}, where D; ={x4, ..., x}is the
set of possible values of X;

® (is a set of constraints:

® scope: a tuple of variables
® relation : a relation specifying tuples of values that this tuple of
variables can legally take on

Define:
® gssignment : mapping from variables to values
® partial assignment: only provides values for some variables

® consistent assignment : partial assignment that doesn’t violate any
constraints

® solution : complete assignment that doesn’t violate any
constraints

6.4110 Spring 2026 22

CSP Objectives

Three possible objectives:

1. Solution: find a satisfying assignment or prove one does not
exist.

2. All solutions: find all satisfying assignments.
3. Inference: conclude what values a variable must have.

CSP is NP-Complete: time exponential in domain size in
worst case

6.4110 Spring 2026 23

Constraint-satisfaction problems: context

Why study CSP?

¢ A CSP formulation exposes structure in the problem that enables
efficient inference

¢ There are many professional, efficient CSP solvers

¢ There are lots of important problems that can be formulated as
csp

® So, if you can formulate as a CSP, it can often be solved efficiently

6.4110 Spring 2026 24

Factory problem

Objects:
® Machines: sander, painter, dryer
e Parts: A,B,C
® Times: 1,...,5

Constraints:

¢ Each part must be sanded before painted before dried.

® The sander and painter can each operate on at most one part at a
time.

® The sander can’t operate at the same time the dryer is operating.

How can we formulate this as a CSP?

6.4110 Spring 2026 25

Hey robot, where are my keys?

® Rooms: bedroom, bathroom, office, kitchen

® Objects: keys, laptop, wallet, purse
Constraints:

® My keys are in the same place as my wallet.

® My wallet is not in my purse.

® My purse is next to my laptop.

® My laptop is in my office.

¢] would never put my wallet in the bathroom.

Where should the robot look?

6.4110 Spring 2026

26

Variations on the theme

Theme: fixed number of variables with finite discrete domains

Variations:
® Infinite discrete domains

¢ Continuous domains

® With linear constraints == linear programming
Polynomial time in number of variables!

® Some other classes have good specialized solutions
(e.g., quadratic programs)

® Getting all solutions

® Assigning costs and finding least cost solution
== constrained optimization

6.4110 Spring 2026 27

Constraints

¢ Unary constraint only involves a single variable: use to reduce
the domain of that variable

¢ Binary constraint involves two variables (domains can be any
size). We will focus on binary constraints. Discussion in book
and HW problem on reducing higher-order constraints to binary,
and other ways of handling them.

Constraint (hyper)graph: useful to visualize constraint structure

@@ oe 2
® © ®
If it does not contain any loops, then there’s a cool, efficient message
passing algorithm.

6.4110 Spring 2026 28

Stupidest possible algorithm

STUPID

for each possible assignment A:
if A does not violate any C € €:
return A
return “failed’

¢ How many A are there?

e Can we do better in the worst case?

¢ Can we do better in many cases?

6.4110 Spring 2026 29

Backtracking (= depth-first search)

a is an assignment, initially { }

BACKTRACK(a)

if comPLETE(a): return a
X = UNASSIGNED-VAR(Q)
for x € DOMAIN-VALUES(X):
if consisTENT(a, {X = x}):
EXTEND(a, {X = x})
T = BACKTRACK(a)
if r # 'failed’: return r
REMOVE(q, {X = x})
return ‘failed’

Is this better than the stupidest possible algorithm?

6.4110 Spring 2026

Variable and value ordering

Dynamically, during search:

® variables: UNASSIGNED-VAR chooses the variable with the fewest
values in its domain
® values: DOMAIN-VALUES orders values earlier that rule out the
fewest choices for variables it’s connected to in the constraint
graph
These will be especially useful in combination with some inference
methods.

6.4110 Spring 2026 31

Next time: more inference methods

¢ Forward checking, backjumping
® Local search
® Message passing

6.4110 Spring 2026

32

