
L24 – A Quick Introduction to Game Theory

AIMA4e: Ch 5.1–2, 5.4–5; Ch 18.1–3

6.4110 Spring 2025 1



What you should know after this lecture

• Two-player zero-sum complete information alternating games
can be handled using similarly to MDPs

• Fully cooperative games can be handled as POMDPs with
execution-time constraints

6.4110 Spring 2025 2



Problem setting
• Centralization: Is the process of selecting actions performed jointly for

all the agents or separately?
• Online centralization: basically, then, we just have a single-agent decision

problem with multiple outputs
• Offline centralization: we can run a single policy-optimization process that

produces a set of policies for de-centralized execution
• No centralization: agents make completely independent decisions

• Payoffs:
• In an zero-sum (usually two-player) game, player A’s loss is always exactly

equal to player B’s game.
• In a fully-cooperative game, all players have the same payoff for all

states/actions.
• Otherwise, it is a general-sum game.

• Turn-taking:
• In an alternating game, players take actions sequentially in a fixed order.
• Otherwise, they may decide and execute in parallel.
• Very little work lets them execute completely asynchronously.

• Observations: may have complete, partial, or no observability of
• World state
• Other agents’ actions

• Communication
• May have extra “side channels” for communication
• Can understand actions taken by one agent and observed by another as

communication6.4110 Spring 2025 3



Some simple cases

• Centralized decision-making (and observations): really a
path-search, MDP, or POMDP with large action space

• Decentralized decision-making but with centralized
“planning/optimization” time: do some kind of policy
optimization to find individual policies for the agents that
perform well under decentralized execution.

Game theorists use “cooperative games” to handle much more
complex situations in which players don’t really have the same
payoffs, but can make strategic alliances.

6.4110 Spring 2025 4



Mechanism design

Mechanism design is a way of setting up decision-making processes
that have the property that if agents collectively make their decisions
in that way, certain fairness-type outcomes will be guaranteed.
Various types of auctions are an example of this.

Example: a sealed-bid second-price auction: the highest bidder wins
but pays the second highest price.

The optimal strategy is for each player to bid their actual utility.

Value to the seller is the second-highest utility (which is actually also
true, in a certain limit, for first-price auctions).

6.4110 Spring 2025 5



Two-player, turn-taking, zero-sum, perfect information
games

Chess, Go, Backgammon, etc.
• Generally discrete state and action spaces
• Zero-sum: U(s,p1) = −U(s,p2)

• Added state variable: to move ∈ {p1,p2}

Big question: what does it mean for a plan or policy to be optimal in
this case?

If you know your opponent’s policy, then it becomes a path-search
problem (or MDP if the game has stochastic transitions).

Otherwise, we often look for the minimax optimal strategy: each
player assumes the other player is perfectly rationally trying to win,
and acts rationally under that assumption.

Note that the minimax optimal strategy isn’t necessarily the best
thing to play against a stupid opponent!
6.4110 Spring 2025 6



Minimax optimal strategy

• Solving online: Can make a “game tree”
• Similar to alternating layers of expectimax, but this time we

alternate between min and max
• Max is the player selecting their current move, assuming the other

player will take actions to try to minimize their score
• Will find the optimal strategy if the whole tree can be searched
• alpha-beta pruning is a cool strategy for reducing search-space size

while retaining optimality
• If the game has a stochastic transition function, then you need to

add expectation layers, between the min and max layers.
• If the tree is too big to search, then we are generally left with

MCTS-type strategies
• Learned heuristic guidance (in the form of policies for biasing

which actions to expand during search and estimated Q values)
are very helpful! (See alpha-Go-zero, etc!)

6.4110 Spring 2025 7



Offline minimax strategies

Just as for MDPs, it’s theoretically possible to compute an optimal
value function, and hence, policy, using dynamic programming!
Here’s the value function for player max, assuming deterministic
transitions, and a terminal 0-1 reward:

Vmax(s) =


+1 if s is a win for max
−1 if s is a win for min
maxa Vmin(T(s,a)) otherwise

Vmin(s) = −Vmax(s)

• Depending on the game, the state might need to include steps
left to go (if finite horizon).

• Just need to compute one value function!

6.4110 Spring 2025 8



Adding stochasticity

Vmax(s) =


+1 if s is a win for max
−1 if s is a win for min
maxa

∑
s′ P(s ′ | s,a)Vmin(s

′) otherwise

Vmin(s) = −Vmax(s)

• Still just need to compute one value function!
• Can use systematic value iteration to compute this
• In large spaces, do “self-play”:

• Basically RL in simulation, but alternating player perspectives
• Still need to worry about function approximation strategy and

exploration strategy

6.4110 Spring 2025 9



Normal-form games

One-step, simultaneous actions, no constraint on payoffs. Much
harder! What does it mean to act rationally?
Prisoner’s dilemma: two players, each can Cooperate or Defect:

Player A \ Player B Cooperate Defect
Cooperate (3, 3) (0, 5)

Defect (5, 0) (1, 1)

• Dominant strategy for player A: Defect, maximizes utility
independent of other player’s choice (same for B)

• If we allow binding agreements or repeated play, we get a higher
payoff for everyone.

6.4110 Spring 2025 10



Nash equilibrium

What if there’s no dominant strategy? Can look for a pair of strategies
(π1,π2) such that:

• If player 1 knows that player 2 is going to do π2 then π1
maximizes player 1’s expected payoff, and

• If player 2 knows that player 1 is going to do π1 then π2
maximizes player 2’s expected payoff.

Player A \ Player B Left Right
Left (0, 0) (1, 1)

Right (1, 1) (0, 0)

• Two Nash equilibria: (L, R) and (R, L)
• Requires coordination to get a good payoff

6.4110 Spring 2025 11



Randomized policies

In MDPs and games like Backgammon, there is an optimal
deterministic policy. But not necessarily true in matrix games. Here
the Nash equilibrium is a mixed (randomized) strategy.

Bart \ Lisa Rock Paper Scissors
Rock (0, 0) (-1, 1) (1, -1)
Paper (1, -1) (0, 0) (-1, 1)

Scissors (-1, 1) (1, -1) (0, 0)

Straightforward linear algebra proof that there’s a single Nash
equilibrium in which each player chooses uniformly at random.

6.4110 Spring 2025 12



So much more!

• Ways of solving coordination problems
• What if we iterate a matrix game?
• What if two players are interacting in an MDP-like situation?

Can seek a Nash equilibrium in the space of simple policies, for
example.

• What if we have sequential games with partial information? (e.g.
Poker)

Take Gabriele Farina’s multi-agent learning class!

6.4110 Spring 2025 13



Next time: Last lecture

• Connections to machine learning
• Please fill out the subject evaluation

6.4110 Spring 2025 14


