
L18: Markov decision processes:
Definition and online solutions

AIMA4e: Chapter 17.1, 17.2.4
More detail: Kochenderfer 9.1, 9.3, 9.5, 9.6, 9.9.1

6.4110 Spring 2025 1

What you should know after this lecture

• What is an MDP?
• Online solution of MDPs: exact method: expectimax
• Approximate methods:

• MCTS works here too (with some modifications)
• Deterministic approximations: most likely outcome, all-outcomes

6.4110 Spring 2025 2

Probabilistic sequential decision-making

Probabilistic transitions
Atomic, discrete states
Full observability
Solution is a policy

• Agent can observe current state completely and correctly
• World dynamics are probabilistic and known to the agent
• Agent selects actions to maximize expected summed rewards

over time
• Agent plans on-line to select next action based on current state

(but still potentially thinking about a longer horizon)

6.4110 Spring 2025 3

Markov decision process

• Focus on sequential decision making: agent takes multiple steps
• Reward function maps states (and actions) to real numbers
• Next state depends probabilistically on the state and action
• The current state is exactly known
• Although we don’t know, right now, what the next state will be,

we will be able to observe it exactly, correctly, when it arises
• Reward function and transition distribution are fixed and known

6.4110 Spring 2025 4

MDPs: formal definition

• S: Set of possible world states (possibly infinite)
• A: Set of possible actions (usually finite)
• T : S×A → P(S): Transition model maps state and action into

probability distribution over next states
• R : S×A× S → R: Reward function defined most generally as a

function of state, action, next state
Sometimes also
• s0 ∈ S : initial state
• γ ∈ [0, 1] : discount factor (defined in a few slides)

6.4110 Spring 2025 5

MDPs: utility, reward, and action

We want to find a way of selecting actions in an MDP that is optimal
in some sense. Maximize expected utility!
Pick the action now that will get us the state sequence with the best
utility, in expectation, assuming we pick all future actions optimally
as well!

a∗ = argmax
a

E
s1,...,sH

[U(s1, . . . , sH) | a0 = a, optimal future actions]

Assuming that our utility over sequences is additive (big
assumption!) and stationary (big assumption!)1, then

a∗ = argmax
a

E
s1,...,sH

[
H∑

t=0

γR(st,at, st+1) | a0 = a, optimal future actions

]

1If your reward is non-stationary, then how much you value something depends on
the time. You could potentially address this by putting t in the state.6.4110 Spring 2025 6

MDPs: horizon

Different ways to think about how long the agent will be acting
• Finite horizon: H is finite

• non-stationary policy may select different actions depending on
number of steps remaining

• Receding horizon
• On every step, act as if you have finite H steps remaining

• Indefinite horizon
• Let H = ∞
• But assume (at least) that the optimal policy has finite
Es1,...,sH [

∑∞
t=0 rt]

• Usually in domains where there are terminal states, and the
optimal strategy eventually terminates after a number of steps that
is finite in expectation.

6.4110 Spring 2025 7

MDPs: more horizon

• Infinite-horizon discounted
• Most typical infinite-horizon model
• Requires discount factor 0 ⩽ γ < 1
• Optimize

E
s1,...,sH

[∞∑
t=0

γtrt

]
• As if process terminates with prob 1 − γ after every step

• Infinite-horizon averaged
• Useful for problems where the agent is supposed to live forever
• Optimize

lim
H→∞

1
H

E
s1,...,sH

[
H∑

t=0

rt

]
We will focus on finite horizon, receding horizon, and
infinite-horizon discounted models.

6.4110 Spring 2025 8

MDPs: policies
We could specify a way of behaving as a policy

π : S×A× . . . S×A → A

that maps the history of actions and observations into the next action.
But! Because in the graphical model for an MDP, st separates st+1
from s0,a0, . . . , st−1,at−1, it is sufficient to base our choice of at on st
only, so we will consider policies that depend only on the current
state (and possibly time–more on this later).
In some problems (games, POMDPs) the optimal policy has to be
randomized. But,
Theorem: In MDPs, there exist deterministic optimal policies.

π∗(s0,H) = argmax
a

E
s1,...,sH

[
H∑

t=0

rt | a0 = a, optimal future actions

]

Also true in infinite / indefinite-horizon cases, with no dependence on
H in the policy.
6.4110 Spring 2025 9

Finite-horizon value functions and policies
Utility of being in state s with H steps left to go:2

V∗
H(s) = max

a
E

s1,...,sH

[
H∑

t=0

rt | a0 = a, optimal future actions

]
V∗

0 (s) = 0

V∗
1 (s) = max

a

∑
s′

P(s ′ | s,a)R(s,a, s ′)

V∗
H(s) = max

a

∑
s′

P(s ′ | s,a)
[
R(s,a, s ′) + V∗

H−1(s
′)
]

Note that the optimal policy depends on the number of steps left to
go!

π∗
H(s) = argmax

a

∑
s′

P(s ′ | s,a)
[
R(s,a, s ′) + V∗

H−1(s
′)
]

2AIMA and KAlg use U for this but every single other text uses V . Well...in
operations research they often use costs c instead of rewards, try to minimize the
expected sum of costs, and use J instead of V .6.4110 Spring 2025 10

Infinite-horizon discounted value functions
• Crucial idea: no matter how long you have been executing so far,

you have the same expected number of future steps: 1/(1 − γ).
• So, any state s always has the same optimal expected sum of

rewards, no matter how long you have been executing.
• Utility of being in state s with discount factor γ:

V∗(s) = max
a
E

s1,...

[∞∑
t=0

γtrt | a0 = a, optimal future actions

]
V∗(s) = max

a

∑
s′

P(s ′ | s,a) [R(s,a, s ′) + γV∗(s ′)]

• Utility is finite, bounded by Rmax/(1 − γ) where Rmax is the
largest value in the range of R.

• Optimal policy is stationary!

π∗(s) = argmax
a

∑
s′

P(s ′ | s,a) [R(s,a, s ′) + γV∗(s ′)]

6.4110 Spring 2025 11

Q and V
Sometimes it’s easier to define values in terms of Q instead of V . No
new ideas, really, just bookkeeeping!
Value of starting in state s, taking action a and then continuing
optimally:

• Finite horizon:

Q∗
H(s,a) =

∑
s′

P(s ′ | s,a)
[
R(s,a, s ′) + V∗

H−1(s
′)
]

V∗
H(s) = max

a
Q∗

H(s,a) π∗
H(s) = argmax

a
Q∗

H(s,a)

• Infinite horizon:

Q∗(s,a) =
∑
s′

P(s ′ | s,a) [R(s,a, s ′) + γV∗(s ′)]

V∗(s) = max
a

Q∗(s,a) π∗(s) = argmax
a

Q∗(s,a)

Useful because if you know Q, you can derive π without knowing T
or R.6.4110 Spring 2025 12

Solution strategies for MDPs

Two main categories
• Online action selection given current state s0 via some form of

search
• Offline solution to derive a complete policy π that can be

executed online very efficiently (next lecture)

6.4110 Spring 2025 13

Expectimax
Searching to a finite depth:

• Use remaining horizon H for finite and receding horizon
problems; set γ = 1

• For infinite horizon problems, if you search to depth H, the error
in your value estimate is bounded by γHRmax/(1 − γ). Note. 3

Expectimax(s,A, T ,R,γ,H)

1 def Q(s,a,H):
2 if H = 0 return 0
3 return

∑
s′ T(s,a, s ′) (R(s,a, s ′) + γmaxa′ Q(s ′,a ′,H− 1))

4 return argmaxa Q(s,a,H)

Can also extract entire policy tree:
• For any s encountered at level h of expectimax,
• π(s,h) = argmaxa Q(s,a,h)
3Why? Because at any point, Rmax/(1 −γ) is the value you’d get if you got reward

Rmax on every step; but this big pile of value would be discounted by γd if you get it d
steps in the future.6.4110 Spring 2025 14

Less stupid expectimax

• Cache all (s,a,H) values computed and re-use when possible
• Don’t expand zero-probability branches!
• sparse sampling algorithm: To reduce branching factor, sample
m << |S| elements s ′ from P(s ′ | s,a) and average their values
(will focus on the most likely outcomes) instead of doing full
expectation over s ′.

See also (optionally!) RTDP (real-time dynamic programming)

6.4110 Spring 2025 15

MCTS for MDPs

Okay to ignore details.
Main differences from deterministic version we looked at earlier:

• children is dictionary from chance nodes to action
• We count how many times each action has been tried in each state
• A chance node has a set of children that are resulting state-nodes

MCTS(s0, (A, T ,R,γ,H), iters)
1 root = StateNode(s0, horizon = H, parent = None, children = {},N = 0)
2 for iter ∈ {1, . . . , iters}:
3 leaf = select(root)
4 child = expand(leaf ,A, T)
5 value = simulate(leaf ,A, T ,R)
6 backup(leaf , value)
7 max child = max(root.children, key = λn. n.N)
8 return root.children[max child].action

6.4110 Spring 2025 16

Monte-Carlo Tree Search (Cont)
expand(n,A,T)

// Unless remaining horizon is 0, add child chance and state nodes and return one
1 if n.horizon = 0:
2 return n
3 for a ∈ A:
4 c ′ = ChanceNode(parent = n, children = { },U = 0,N = 0)
5 n.children[c ′] = a
6 c,a = random choice(n.children)
7 s ′ = T(n.s,a)
8 n ′ = StateNode(s ′,n.horizon − 1, parent = c, children = { },N = 0)
9 c.children[s ′] = n ′

10 return

simulate(n,A,T ,R)
// Randomly finish path and return cumulative reward

1 s = n.state; total reward = 0
2 for h ∈ (n.horizon, . . . , 1):
3 a = random choice(A) // or use some rollout policy
4 s ′ ∼ P(s ′ | s,a)
5 total reward += R(s,a,s ′)
6 s = s ′

7 return total reward
6.4110 Spring 2025 17

Monte-Carlo Tree Search (Cont)

select(n)

1 c,a = max(n.children, key = λc.ucb(n.N, c.N, c.U))
2 s ′ ∼ P(s ′ | n.state, c,a)
3 if not s ′ in c.children:
4 c.children[s ′] = StateNode(s ′,H− 1, parent = c, children = {},N = 0)
5 return c.children[s ′]
6 return select(c.children[s ′])

backup(n, v below)

// Add value v to n’s statistics and pass it up
1 n.N += 1
2 if n.parent:
3 a = n.parent.action // Action that led to n

4 v = γ · v below + R(n.parent.parent.s,a,n.s) // Value of executing a in parent
5 n.parent.U += v

6 backup(n.parent.parent, v)

6.4110 Spring 2025 18

Monte-Carlo Tree Search (Cont)

There are many strategies for doing backups. Could instead: directly update
the U at leaf using value from simulate. But then work back up the path
letting

U(s,a)+ =
∑
s′

R(s,a, s ′) + γmax
a′

U(s ′,a ′)/N(s ′,a ′)

backup(n, v below)

// Add value v to n’s statistics and pass it up
1 n.N += 1
2 if n.parent:
3 a = n.parent.action // Action that led to n

4 v = γ · v below + R(n.parent.parent.s,a,n.s) // Value of executing a in parent
5 n.parent.U += v

6 backup(n.parent.parent,max(n.parent.parent.children, λc. c.U/c.N))

6.4110 Spring 2025 19

Stochastic shortest-paths problems

Min-cost path problems : stochastic shortest-path problems ::
reward-maximization problems : MDPs

• S: Set of possible world states (possibly infinite)
• A: Set of possible actions (usually finite)
• T : S×A → P(S): Transition model maps state and action into

probability distribution over next states
• G ⊂ S : set of goal states

Sometimes also
• s0 ∈ S : initial state
• C : S×A → R: cost function (treat as always = 1 if missing)

Objective is to find a policy that minimizes the expected cost to reach
some state in G.

Convert to MDP with: γ = 1; R(s,a, s ′) = 0 if s ∈ G;
R(s,a, s ′) = −C(s,a) if s < G; T(s,a, s) = 1 if s ∈ G.
6.4110 Spring 2025 20

Deterministic, open-loop approximations

More efficient (but also more approximate) strategies. Risk ignoring
low probability but very bad outcomes.

• Rely on replanning (as in receding horizon control)
• Build a deterministic search problem and solve it

• General MDP → reward-maximization problem
• Stochastic shortest-paths problem → min-cost path problem

• Two general strategies:
• Make T deterministic by assuming the most likely outcome will

occur
• Make T deterministic by allowing the search to choose among the

outcomes, but assigning an additional cost of − log T(s,a, s ′) to the
selected transition.

Cool result: if you have a stochastic shortest-paths problem, and you
determinize and assign costs − log T(s,a, s ′) to the transitions, then
the least cost path to a goal state is the open-loop action sequence that
is most likely to reach a goal.

6.4110 Spring 2025 21

Next time

• Finding optimal policies, offline, for MDPs, which can be
executed very efficiently online

6.4110 Spring 2025 22

