
L17 – Decision-making under uncertainty

AIMA4e: Chapter 4.3; Chapter 16.1–3

6.4110 Spring 2025 1

What you should know after this lecture

Decision-making when you are uncertain about the effects of your
actions

• What if there is a set of possible outcomes?
• Sequential planning with set-based outcome uncertainty
• Decision-making under probabilistic models of uncertainty:

maximizing expected utility.

6.4110 Spring 2025 2

Path-search problems with future-state uncertainty

Atomic states
Know an initial state
Transitions may only specify a
resulting state set

6.4110 Spring 2025 3

Vacuum world doesn’t (always) suck!

Example environment from AIMA:
• Robot in grid world has a vacuum cleaner
• Each cell in grid has dirt or not
• Robot can suck (with vacuum) or move left, right, up, or down
• Want the room to be completely clean

If completely observable and deterministic, then we can solve easily
using min-cost-path search. But what if:
• The vacuum or the robot does not always work as expected?

6.4110 Spring 2025 4

Non-Deterministic Actions

This is sometimes known as the FOND (fully-observable
non-deterministic) planning setting.

• Assume that the robot can always correctly observe the current
world state

• But, when it takes an action, there is a set of possible outcomes.
• After each action, it can observe the result and decide what to do

Problem formulation:
• Given (S,A, s0, T̃ ,G,C) where T̃ : S×A → Powerset(S)
• Find a contingent (conditional) plan in the form of a decision tree.
• Measuring the cost of a solution is tricky: could be maximum or

average over the costs of the possible paths.

6.4110 Spring 2025 5

And/Or search

Search tree with alternating layers of node types:
• Or nodes : like our traditional search-tree nodes, where we get to

pick an action
• And nodes : there are several possible resulting states and we

have to find a plan for all of them.
Resulting plan is a tree with

• Internal nodes labeled with actions
• Branches labeled with states (that could possibly occur as a result

of the action)
• Terminal leaf nodes indicating plan success.

There are optimal AO search methods (e.g. AO∗) but we will just look
in detail at a simple one.

6.4110 Spring 2025 6

Depth-first And/Or search

AO-DFS(s0, (A, T̃ ,G))

1 return or-search(s0, [], (A, T̃ ,G))

or-search(s, path, (A, T̃ ,G))

1 if s ∈ G: return success-leaf()
2 if s ∈ path: return None // Found a cycle
3 for a ∈ A:
4 plan dict = and-search(T̃(s,a), path + [s], (A, T̃ ,G))
5 if plan dict , None: return tree-node(a, plan dict)
6 return None

and-search(states, path, (A, T̃ ,G))

1 plan dict = { }

2 for s ∈ states:
3 plan = or-search(s, path, (A, T̃ ,G))
4 if plan = None: return None
5 plan dict[s] = plan
6 return plan dict
6.4110 Spring 2025 7

What about cycles?

Sometimes, you just need cycles! Throw balls at target until you hit it!

• In line 2 of or-search, return a special cycle-leaf(s) node
• In execution, if you hit a cycle-leaf(s), trace up your path to find

state s and begin executing from there.

6.4110 Spring 2025 8

Handling probabilistic uncertainty over outcomes

One-step decision making:
• You have a finite set of possible actions a1, . . . ,ak

• For each one, there is a distribution Pa over a finite set of
outcomes o1, . . . ,on

• You assign a utility to each outcome U(oi) ∈ R

• Which action should you select?

See very cool result due to Von Neumann and Morgenstern: under some
assumptions about your preferences over uncertain actions (e.g., given two
actions with the same two possible outcomes, you’d prefer the one that
assigns higher probability to the preferred outcome) then

• There’s a real-valued function U defined over actions, and
• Your uncertainty values p have to satisfy the usual axioms of probability

theory.

If not, then I can construct a set of bets (a “dutch book”) that you will be
willing to take, but which guarantee that I profit in expectation.
6.4110 Spring 2025 9

Maximize expected utilty

In this setting, then, it’s rational to selection the action with the
maximum expected utility: that is, choose

argmax
a

∑
o

Pa(o)U(o)

6.4110 Spring 2025 10

Do a lottery

6.4110 Spring 2025 11

Utility of money

• You don’t have to assign utility linearly to amounts of money
• Would you value $2M twice as much as $4M?
• Would you value a lottery with 1/2 chance at $4M and 1/2 chance

at nothing the same as a sure $2M?
• If you prefer the sure bet, then you are risk averse. That means

that your utility value, as a function of monetary value, is
concave, so that

1
2
U(4M) +

1
2
U(0) < U(2M)

• Most humans are (roughly) risk averse in the domain of gains
and risk seeking in the domain of losses.

• Maximizing expected utility is a good framing but there are lots
of example (e.g., Allais’ paradox) of ways in which it fails to
model actual human preferences.

6.4110 Spring 2025 12

Utility of money

6.4110 Spring 2025 13

Sequential decision making: Markov decision process

• Sequential decision making: agent takes multiple steps
• Reward function maps states (and actions) to real numbers
• Next state depends probabilistically on the state and action
• The current state is exactly known
• Although we don’t know, right now, what the next state will be,

we will be able to observe it exactly, correctly, when it arises
• Reward function and transition distribution are fixed and known
• Assume : Utility of a sequence of states is the sum of the rewards

6.4110 Spring 2025 14

MDPs: formal definition

• S: Set of possible world states (possibly infinite)
• A: Set of possible actions (usually finite)
• T : S×A → P(S): Transition model maps state and action into

probability distribution over next states
• R : S×A× S → R: Reward function defined most generally as a

function of state, action, next state
Sometimes also
• s0 ∈ S : initial state
• γ ∈ [0, 1] : discount factor (defined in next slide)

6.4110 Spring 2025 15

MDPs: utility, reward, and action

We want to find a way of selecting actions in an MDP that is optimal
in some sense. Maximize expected utility!
Pick the action now that will get us the state sequence with the best
utility, in expectation, assuming we pick all future actions optimally
as well!

a∗ = argmax
a

E
s1,...,sH

[U(s1, . . . , sH) | a0 = a, optimal future actions]

Assuming that our utility over sequences is additive (big
assumption!) and stationary (big assumption!)1, then

a∗ = argmax
a

E
s1,...,sH

[
H∑

t=0

R(st,at, st+1) | a0 = a, optimal future actions

]

1If your reward is non-stationary, then how much you value something depends on
the time. You could potentially address this by putting t in the state.6.4110 Spring 2025 16

MDPs: horizon

Different ways to think about how long the agent will be acting
• Finite horizon: H is finite

• non-stationary policy may select different actions depending on
number of steps remaining

• Receding horizon
• On every step, act as if you have finite H steps remaining

• Indefinite horizon
• Let H = ∞
• But assume (at least) that the optimal policy has finite
Es1,...,sH [

∑∞
t=0 rt]

• Usually in domains where there are terminal states, and the
optimal strategy eventually terminates after a number of steps that
is finite in expectation.

6.4110 Spring 2025 17

Finite-horizon value functions and policies
Utility of being in state s with H steps left to go:2

V∗
H(s) = max

a
E

s1,...,sH

[
H∑

t=0

rt | a0 = a, optimal future actions

]
V∗

0 (s) = 0

V∗
1 (s) = max

a

∑
s′

P(s ′ | s,a)R(s,a, s ′)

V∗
H(s) = max

a

∑
s′

P(s ′ | s,a)
[
R(s,a, s ′) + V∗

H−1(s
′)
]

Note that the optimal policy depends on the number of steps left to
go!

π∗
H(s) = argmax

a

∑
s′

P(s ′ | s,a)
[
R(s,a, s ′) + V∗

H−1(s
′)
]

2AIMA and KAlg use U for this but every single other text uses V . Well...in
operations research they often use costs c instead of rewards, try to minimize the
expected sum of costs, and use J instead of V .6.4110 Spring 2025 18

Q and V

Sometimes it’s easier to define values in terms of Q instead of V . No
new ideas, really, just bookkeeeping!
Value of starting in state s, taking action a and then continuing
optimally:

• Finite horizon:

Q∗
H(s,a) =

∑
s′

P(s ′ | s,a)
[
R(s,a, s ′) + V∗

H−1(s
′)
]

V∗
H(s) = max

a
Q∗

H(s,a) π∗
H(s) = argmax

a
Q∗

H(s,a)

Useful because if you know Q, you can derive π without knowing T
or R.

6.4110 Spring 2025 19

Solution strategies for MDPs

Two main categories
• Online action selection given current state s0 via some form of

search
• Offline solution to derive a complete policy π that can be

executed online very efficiently (next lecture)

6.4110 Spring 2025 20

Expectimax

Searching to a finite depth:
• Use remaining horizon H for finite and receding horizon

problems; set γ = 1
• For infinite horizon problems, if you search to depth H, the error

in your value estimate is bounded by γHRmax/(1 − γ). Note. 3

Expectimax(s,A, T ,R,γ,H)

1 def Q(s,a,H):
2 if H = 0 return 0
3 return

∑
s′ T(s,a, s ′) (R(s,a, s ′) + γmaxa′ Q(s ′,a ′,H− 1))

4 return argmaxa Q(s,a,H)

3Why? Because at any point, Rmax/(1 −γ) is the value you’d get if you got reward
Rmax on every step; but this big pile of value would be discounted by γd if you get it d
steps in the future.6.4110 Spring 2025 21

Less stupid expectimax

• Cache all (s,a,H) values computed and re-use when possible
• Don’t expand zero-probability branches!
• sparse sampling algorithm: To reduce branching factor, sample
m << |S| elements s ′ from P(s ′ | s,a) and average their values
(will focus on the most likely outcomes) instead of doing full
expectation over s ′.

• Monte-Carlo tree search
See also (optionally!) RTDP (real-time dynamic programming)

6.4110 Spring 2025 22

MCTS for MDPs

Okay to ignore details — just here for reference.
Main differences from deterministic version we looked at earlier:

• children is dictionary from chance nodes to action
• We count how many times each action has been tried in each state
• A chance node has a set of children that are resulting state-nodes

MCTS(s0, (A, T ,R,γ,H), iters)
1 root = StateNode(s0, horizon = H, parent = None, children = {},N = 0)
2 for iter ∈ {1, . . . , iters}:
3 leaf = select(root)
4 child = expand(leaf ,A, T)
5 value = simulate(leaf ,A, T ,R)
6 backup(leaf , value)
7 max child = max(root.children, key = λn. n.N)
8 return root.children[max child].action

6.4110 Spring 2025 23

Monte-Carlo Tree Search (Cont)
expand(n,A,T)

// Unless remaining horizon is 0, add child chance and state nodes and return one
1 if n.horizon = 0:
2 return n
3 for a ∈ A:
4 c ′ = ChanceNode(parent = n, children = { },U = 0,N = 0)
5 n.children[c ′] = a
6 c,a = random choice(n.children)
7 s ′ = T(n.s,a)
8 n ′ = StateNode(s ′,n.horizon − 1, parent = c, children = { },N = 0)
9 c.children[s ′] = n ′

10 return

simulate(n,A,T ,R)
// Randomly finish path and return cumulative reward

1 s = n.state; total reward = 0
2 for h ∈ (n.horizon, . . . , 1):
3 a = random choice(A) // or use some rollout policy
4 s ′ ∼ P(s ′ | s,a)
5 total reward += R(s,a,s ′)
6 s = s ′

7 return total reward
6.4110 Spring 2025 24

Monte-Carlo Tree Search (Cont)

select(n)

1 c,a = max(n.children, key = λc.ucb(n.N, c.N, c.U))
2 s ′ ∼ P(s ′ | n.state, c,a)
3 if not s ′ in c.children:
4 c.children[s ′] = StateNode(s ′,H− 1, parent = c, children = {},N = 0)
5 return c.children[s ′]
6 return select(c.children[s ′])

backup(n, v below)

// Add value v to n’s statistics and pass it up
1 n.N += 1
2 if n.parent:
3 a = n.parent.action // Action that led to n

4 v = γ · v below + R(n.parent.parent.s,a,n.s) // Value of executing a in parent
5 n.parent.U += v

6 backup(n.parent.parent, v)

6.4110 Spring 2025 25

Monte-Carlo Tree Search (Cont)

There are many strategies for doing backups. Could instead: directly update
the U at leaf using value from simulate. But then work back up the path
letting

U(s,a)+ =
∑
s′

R(s,a, s ′) + γmax
a′

U(s ′,a ′)/N(s ′,a ′)

backup(n, v below)

// Add value v to n’s statistics and pass it up
1 n.N += 1
2 if n.parent:
3 a = n.parent.action // Action that led to n

4 v = γ · v below + R(n.parent.parent.s,a,n.s) // Value of executing a in parent
5 n.parent.U += v

6 backup(n.parent.parent,max(n.parent.parent.children, λc. c.U/c.N))

6.4110 Spring 2025 26

Stochastic shortest-paths problems

Min-cost path problems : stochastic shortest-path problems ::
reward-maximization problems : MDPs

• S: Set of possible world states (possibly infinite)
• A: Set of possible actions (usually finite)
• T : S×A → P(S): Transition model maps state and action into

probability distribution over next states
• G ⊂ S : set of goal states

Sometimes also
• s0 ∈ S : initial state
• C : S×A → R: cost function (treat as always = 1 if missing)

Objective is to find a policy that minimizes the expected cost to reach
some state in G.

Convert to MDP with: γ = 1; R(s,a, s ′) = 0 if s ∈ G;
R(s,a, s ′) = −C(s,a) if s < G; T(s,a, s) = 1 if s ∈ G.
6.4110 Spring 2025 27

Deterministic, open-loop approximations

More efficient (but also more approximate) strategies. Risk ignoring
low probability but very bad outcomes.

• Rely on replanning (as in receding horizon control)
• Build a deterministic search problem and solve it

• General MDP → reward-maximization problem
• Stochastic shortest-paths problem → min-cost path problem

• Two general strategies:
• Make T deterministic by assuming the most likely outcome will

occur
• Make T deterministic by allowing the search to choose among the

outcomes, but assigning an additional cost of − log T(s,a, s ′) to the
selected transition.

Cool result: if you have a stochastic shortest-paths problem, and you
determinize and assign costs − log T(s,a, s ′) to the transitions, then
the least cost path to a goal state is the open-loop action sequence that
is most likely to reach a goal.

6.4110 Spring 2025 28

