
L16: Planning in continuous spaces

AIMA4e: Chapter 4.2; 26.5.1, 26.5.2 26.5.4
(skim traj opt part–don’t panic!)

6.4110 Spring 2025 1



What you should know after this lecture

• Completely general planning in continuous spaces is very hard.
• Local search methods (gradient-based or “evolutionary”) are

general-purpose but suffer badly from local optima.
• In geometric problems, such as robot motion planning, there are

good solutions, particularly sampling-based strategies.

6.4110 Spring 2025 2



Continuous path-search problems

Factored, continuous states,
usually in Rn

Smoothness of some kind in T

6.4110 Spring 2025 3



Problem formulation
• We will assume discrete decision epochs

(continuous time important but we won’t study it)
• State set: S ⊂ RD can include angles, positions, velocities, etc.

(be careful with angles!!)
• Initial state: s0 ∈ S
• Action set: A

• If discrete, then use regular forward path search
• Generally, in some other space A ⊂ RA

• Important common special case: A ⊂ S
• Transition model: T : S×A → S

• Often T is smooth (differentiable)
• A very common special case when A ⊂ S is discontinuous:

T(s,a) = a except when (s,a) is “blocked”
in which case T(s,a) = s

• Goal set: G ⊂ S
• Cost function C : S×A → R

• We need to find next action to take. Sometimes the number of
steps is fixed, sometimes not.

• Find plan a0, . . . ,ak−1 from s0 to some state in G such that
T(s0,a0) = s1, . . . , T(sk−1,ak−1) = sk and sm ∈ G

• We try to minimize
∑

i C(si,ai) but may only approximate.
6.4110 Spring 2025 4



Trajectory optimization
Assume target g ∈ S and additional cost lf(sk,g) for reaching final
state sk. Often lf(sk,g) = ∥sk − g∥2.
Direct Shooting
• Choose a0, . . .ak−1 to minimize

lf(sk,g) +
k−1∑
j=0

c(aj)

where sk = T(T(. . . T(T(s0,a0),a1) . . .),ak−1)
• Can be hard to optimize–gradient is weak

Direct Transcription
• Add explicit variables to optimization problem for sj
• Choose a0, . . .ak−1, s1, . . . , sk to minimize

lf(sk,g) +
k−1∑
j=0

c(aj) + l(T(sj,aj), sj+1)

Optimize using gradient methods. Local optima can be bad.6.4110 Spring 2025 5



Robot motion planning: abstract formulation

An important special case with algorithms that exploit its structure
• Let S be the set of configurations of a robot
• Assume you are given a map of obstacles in the 3D world
• You want to find a collision-free path between a starting and

ending state of the robot
• Let A = S and assume

• T(s, s ′) = s ′ if there are no obstacles on a (often linear) path
between s and s ′

• T(s, s ′) = s otherwise (not worth considering)

This formulation is reasonable for holonomic systems that can
directly make incremental motions in all dimensions of S. Needs to
be extended to handle, e.g., cars.

6.4110 Spring 2025 6



Robot motion planning, more concretely

• Consider a robot that’s made up of a collection of rigid bodies
with joints between them

• Joint types: rotational, prismatic (sliding), free (mobile robot)
• Joint limits: some rotational joints can go all the way around, but

generally there are limits
• Ignore dynamics, but we still have to think about what “motors”

we have: differential drive vs omni-directional robot base
• Environment is some bounded 2D or 3D space (called the

“workspace”) with some immovable obstacles in it.
• configuration is a vector of positions of all the joints q ∈ Q

• motion planning problem: given two configurations qs and qg,
is there collision-free trajectory?

• trajectory: continuous function f : [0, 1] → Q
• f(0) = qs and f(1) = qg

• collision-free: for all values of f(t), if the robot is in that
configuration it does not collide with any obstacle (or itself)

6.4110 Spring 2025 7



Configuration space

• It’s hard to think about and formalize a whole robot moving
around in the 2D or 3D workspace.

• Instead, think about a point moving around in the space of
possible robot configurations (cspace).

• Let Cfree be the set of robot configurations q ∈ Q such that if the
robot is in that configuration it does not collide with the
environment or itself.

• Our problem, then, is to find a trajectory for a point that goes
between qs and qg and stays entirely in Cfree.

• Unfortunately, it can be hard to explicitly characterize the shape
of Cfree, which depends both on the obstacles in the environment
and the kinematics (shapes and joints) of the robot.

6.4110 Spring 2025 8



Workspace vs Configuration Space

6.4110 Spring 2025 9



Two-joint robot arm C-space

6.4110 Spring 2025 10



Searching configuration space
We focus on piecewise linear paths in configuration space. Now
instead of finding a whole continuous function, we just have to find
some set of points that we can connect up without collisions.
Three strategies:
• Exact: Construct an exact decomposition of Cfree into traversible

regions and find a path that makes linear moves between them.
• Complete algorithms exist.
• Drawbacks: Exponential in d, the number of degrees of freedom of

the robot. Difficult to implement.
• Grid-based: Min-cost path search in a grid.

• Action space: small fixed displacements of each joint within Cfree
• Goal set: configurations that are close to qg (cannot hit it exactly!)
• Heuristic! Distance in configuration space. Can be tricky.
• Drawbacks: Grid size is exponential in degrees of freedom. Needs

fine discretization if gaps between cspace obstacles are small
(increases running time).

• Sample-based: Most widely used.
• Probabilistically complete.
• Drawback: Narrow-passage problem.

6.4110 Spring 2025 11



Sample-based method: Probabilistic Road Map (PRM)

• Randomly sample configurations
• Discard samples that are in collision
• Connect near neighbors via straight-line segments
• Discard segments that are in collision
• Connect start and goal to resulting graph and search

Build-PRM(qs,qg,K, δ)

1 V = {qs,qg};E = {}

2 for k = 1..K
3 q = sample-conf()
4 if is-collision-free(q): V.add(q)
5 for (qa,qb) ∈ V × V :
6 path = generate-linear-path(qa,qb)
7 if is-collision-free(path): E.add(path)
8 return graph-search(V,E,qs,qg)

6.4110 Spring 2025 12



PRM iterations

Image source: E. Plaku

6.4110 Spring 2025 13



Rapidly expanding random trees (RRT)
Sample-based algorithm that is easy to implement and reasonably
effective

• Randomly sample configurations
• Try to connect via a linear collision-free path to closest (need a

distance metric!) configuration in the tree
• Better if bi-directional!
• Not optimal—need to “shortcut” and smooth

Build-RRT(qs,qg,K, δ)

1 T = Tree(qs)
2 for k = 1..K
3 qrand = random-conf() // Sample qg occasionally
4 qnear = nearest-vertex(qrand, T)
5 success, path = extend-path(qnear,qrand, δ)
6 for i = 1..len(path) − 1:
7 T .add-edge(path[i], path[i+ 1])
8 if success: return T .path(qs,qg)

6.4110 Spring 2025 14



RRT iterations

Image source: H. Choset, CMU

6.4110 Spring 2025 15



Voronoi Bias is key to RRT
• Tree vertices near large unexplored regions are more likely to be

extended.

6.4110 Spring 2025 16



RRT* - asymptotically optimal RRT

• Swap in new point as parent for nearby vertices if it leads to
shorter path than the path through their curret parent

6.4110 Spring 2025 17



Local optimization

Alternatively, we can start with a path (still defined as linear
interpolation between waypoints that is not legal, and try to improve
it!

• Fix K waypoints in cspace: q1, . . . ,qK

• Initialize (e.g. a straight line)
• Pick objective (cost) function

K−1∑
k=1

max-penetration-depth(qk,qk+1) + λdist(qk,qk+1)

• Minimize using gradient-based techniques
• Can have a lot of trouble with local optima
• Less craziness in path, if it works

6.4110 Spring 2025 18



Next time

• Uncertainty!

6.4110 Spring 2025 19


