
L16: Planning in continuous spaces

AIMA4e: Chapter 4.2; 26.5.1, 26.5.2 26.5.4
(skim traj opt part–don’t panic!)
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What you should know after this lecture

• Completely general planning in continuous spaces is very hard.
• Local search methods (gradient-based or “evolutionary”) are

general-purpose but suffer badly from local optima.
• In geometric problems, such as robot motion planning, there are

good solutions, particularly sampling-based strategies.

6.4110 Spring 2025 2



Continuous path-search problems

Factored, continuous states,
usually in Rn

Smoothness of some kind in T
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Problem formulation
• We will assume discrete decision epochs

(continuous time important but we won’t study it)
• State set: S ⊂ RD can include angles, positions, velocities, etc.

(be careful with angles!!)
• Initial state: s0 ∈ S
• Action set: A

• If discrete, then use regular forward path search
• Generally, in some other space A ⊂ RA

• Important common special case: A ⊂ S
• Transition model: T : S×A → S

• Often T is smooth (differentiable)
• A very common special case when A ⊂ S is discontinuous:

T(s,a) = a except when (s,a) is “blocked”
in which case T(s,a) = s

• Goal set: G ⊂ S
• Cost function C : S×A → R

• We need to find next action to take. Sometimes the number of
steps is fixed, sometimes not.

• Find plan a0, . . . ,ak−1 from s0 to some state in G such that
T(s0,a0) = s1, . . . , T(sk−1,ak−1) = sk and sm ∈ G

• We try to minimize
∑

i C(si,ai) but may only approximate.
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Trajectory optimization
Assume target g ∈ S and additional cost lf(sk,g) for reaching final
state sk. Often lf(sk,g) = ∥sk − g∥2.
Direct Shooting
• Choose a0, . . .ak−1 to minimize

lf(sk,g) +
k−1∑
j=0

c(aj)

where sk = T(T(. . . T(T(s0,a0),a1) . . .),ak−1)
• Can be hard to optimize–gradient is weak

Direct Transcription
• Add explicit variables to optimization problem for sj
• Choose a0, . . .ak−1, s1, . . . , sk to minimize

lf(sk,g) +
k−1∑
j=0

c(aj) + l(T(sj,aj), sj+1)

Optimize using gradient methods. Local optima can be bad.6.4110 Spring 2025 5



Robot motion planning: abstract formulation

An important special case with algorithms that exploit its structure
• Let S be the set of configurations of a robot
• Assume you are given a map of obstacles in the 3D world
• You want to find a collision-free path between a starting and

ending state of the robot
• Let A = S and assume

• T(s, s ′) = s ′ if there are no obstacles on a (often linear) path
between s and s ′

• T(s, s ′) = s otherwise (not worth considering)

This formulation is reasonable for holonomic systems that can
directly make incremental motions in all dimensions of S. Needs to
be extended to handle, e.g., cars.
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Robot motion planning, more concretely

• Consider a robot that’s made up of a collection of rigid bodies
with joints between them

• Joint types: rotational, prismatic (sliding), free (mobile robot)
• Joint limits: some rotational joints can go all the way around, but

generally there are limits
• Ignore dynamics, but we still have to think about what “motors”

we have: differential drive vs omni-directional robot base
• Environment is some bounded 2D or 3D space (called the

“workspace”) with some immovable obstacles in it.
• configuration is a vector of positions of all the joints q ∈ Q

• motion planning problem: given two configurations qs and qg,
is there collision-free trajectory?

• trajectory: continuous function f : [0, 1] → Q
• f(0) = qs and f(1) = qg

• collision-free: for all values of f(t), if the robot is in that
configuration it does not collide with any obstacle (or itself)

6.4110 Spring 2025 7



Configuration space

• It’s hard to think about and formalize a whole robot moving
around in the 2D or 3D workspace.

• Instead, think about a point moving around in the space of
possible robot configurations (cspace).

• Let Cfree be the set of robot configurations q ∈ Q such that if the
robot is in that configuration it does not collide with the
environment or itself.

• Our problem, then, is to find a trajectory for a point that goes
between qs and qg and stays entirely in Cfree.

• Unfortunately, it can be hard to explicitly characterize the shape
of Cfree, which depends both on the obstacles in the environment
and the kinematics (shapes and joints) of the robot.
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Workspace vs Configuration Space
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Two-joint robot arm C-space
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Searching configuration space
We focus on piecewise linear paths in configuration space. Now
instead of finding a whole continuous function, we just have to find
some set of points that we can connect up without collisions.
Three strategies:
• Exact: Construct an exact decomposition of Cfree into traversible

regions and find a path that makes linear moves between them.
• Complete algorithms exist.
• Drawbacks: Exponential in d, the number of degrees of freedom of

the robot. Difficult to implement.
• Grid-based: Min-cost path search in a grid.

• Action space: small fixed displacements of each joint within Cfree
• Goal set: configurations that are close to qg (cannot hit it exactly!)
• Heuristic! Distance in configuration space. Can be tricky.
• Drawbacks: Grid size is exponential in degrees of freedom. Needs

fine discretization if gaps between cspace obstacles are small
(increases running time).

• Sample-based: Most widely used.
• Probabilistically complete.
• Drawback: Narrow-passage problem.
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Sample-based method: Probabilistic Road Map (PRM)

• Randomly sample configurations
• Discard samples that are in collision
• Connect near neighbors via straight-line segments
• Discard segments that are in collision
• Connect start and goal to resulting graph and search

Build-PRM(qs,qg,K, δ)

1 V = {qs,qg};E = {}

2 for k = 1..K
3 q = sample-conf()
4 if is-collision-free(q): V.add(q)
5 for (qa,qb) ∈ V × V :
6 path = generate-linear-path(qa,qb)
7 if is-collision-free(path): E.add(path)
8 return graph-search(V,E,qs,qg)
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PRM iterations

Image source: E. Plaku
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Rapidly expanding random trees (RRT)
Sample-based algorithm that is easy to implement and reasonably
effective

• Randomly sample configurations
• Try to connect via a linear collision-free path to closest (need a

distance metric!) configuration in the tree
• Better if bi-directional!
• Not optimal—need to “shortcut” and smooth

Build-RRT(qs,qg,K, δ)

1 T = Tree(qs)
2 for k = 1..K
3 qrand = random-conf() // Sample qg occasionally
4 qnear = nearest-vertex(qrand, T)
5 success, path = extend-path(qnear,qrand, δ)
6 for i = 1..len(path) − 1:
7 T .add-edge(path[i], path[i+ 1])
8 if success: return T .path(qs,qg)
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RRT iterations

Image source: H. Choset, CMU
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Voronoi Bias is key to RRT
• Tree vertices near large unexplored regions are more likely to be

extended.
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RRT* - asymptotically optimal RRT

• Swap in new point as parent for nearby vertices if it leads to
shorter path than the path through their curret parent
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Local optimization

Alternatively, we can start with a path (still defined as linear
interpolation between waypoints that is not legal, and try to improve
it!

• Fix K waypoints in cspace: q1, . . . ,qK

• Initialize (e.g. a straight line)
• Pick objective (cost) function

K−1∑
k=1

max-penetration-depth(qk,qk+1) + λdist(qk,qk+1)

• Minimize using gradient-based techniques
• Can have a lot of trouble with local optima
• Less craziness in path, if it works
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Next time

• Uncertainty!

6.4110 Spring 2025 19


