
L15: Planning with factored representations

AIMA4e: Chapter 11.1–11.3; 11.5

6.4110 Spring 2025 1

What you should know after this lecture

• STRIPS planning representation takes advantage of relations,
factoring, locality, and sparsity to make transition model compact

• STRIPS models enable powerful domain-independent heuristics
• We can model partial information, and other extensions, in this

formalism

6.4110 Spring 2025 2

Factored states and information

Factored, discrete states
Compact, sparse representation of T
Construct heuristics via relaxation

6.4110 Spring 2025 3

Making plans in complex domains

• We have seen how to frame planning for an agent as searching
for a path through a state space.

• We have also seen how to describe states using a factored
representation in terms of variables and values

• Can we combine them? Yes, with the following advantages:
• Factoring state representations lets us compactly describe the goals

and transition model
• Factored structure enables a lot of relaxations that lead to powerful

domain independent heuristics

6.4110 Spring 2025 4

“Classical planning” framework

• Make some structural assumptions about the domain
• sparsity of effect: any action taken by an agent doesn’t change

many aspects of the environment state
• locality of dependence: what effects an action will have depend

only on a few aspects of the environment state
• Leads us to a special-purpose (but still domain independent)

representation language for describing S, A, T , and G that
• Is highly compact (and therefore learnable from few samples)
• Can be used to plan efficiently

• Language is called strips; standardized syntax and variations in
pddl (planning domain description language)

6.4110 Spring 2025 5

Planning domain description language

For now we are following syntax from AIMA—we’ll show later what the “real”
syntax is like.

Domain specification
• predicates: symbols, like On or Airport
• object variables: symbols, like x
• fluents: atoms, like On(x,y)
// These are the factors of our state representation

• operators: schematic, factored, description of T , like

Unload(obj, plane, loc)
• preconditions: Aboard(obj, plane), At(plane, loc)
• effect: At(obj, loc), ¬Aboard(obj, plane)

6.4110 Spring 2025 6

Planning domain description language

A ground fluent is a predicate applied to a tuple of constant symbols.

Problem specification
• constants: symbols, like blockA or 747 e35b2
• initial state: set of ground fluents that are true in the initial state;

assume all other ground fluents are false.
(This is often called the closed world assumption.)

• goal: conjunction (set) of ground fluents

6.4110 Spring 2025 7

Path-search problem given PDDL domain and problem

Mapping this back into the representation we used for path search
problems

• S:
• Plug all combinations of constants into all predicates to get all

ground fluents, like Aboard(blockA, 747 e35b2)
• A state is an assignment of True or False to each ground fluent.
• It is often most efficient to represent a state as the set of ground

fluents that have the value True.
• A: Plug all combinations of constants into all operators to get all

ground operators. These are the possible actions.
• G ⊂ S: All states in which all ground fluents in the goal are

assigned to True
• s0: The initial state, set of ground fluents that are true initially

6.4110 Spring 2025 8

State transition function

Define T(s,a) where
• s : set of true ground fluents
• a : ground operator instance

as follows:
• If preconditions(a) ⊆ s then

T(s,a) = s− del(a) ∪ add(a)

where add(a) are positive fluents in effects(a) and del(a) are
negated fluents in effects(a)

• Otherwise, the operator a is not applicable in state s, and we can
think of it as having no effect, so

T(s,a) = s

6.4110 Spring 2025 9

Planning algorithms

Given a domain and problem description, how do we find a plan?
• Forward best-first search with heuristics that take advantage of

the structured representation
• Regression (or backward chaining), works backwards from the

goal, states in the search space are actually sets of fluents
representing sub-goals (not environment states)

• Reduction to propositional satisfiability.

6.4110 Spring 2025 10

Why is this formalism useful?

• The domain description is independent of the particular universe
of objects (constants)

• Similar in some ways to a graph neural network (you can think
of nodes for fluents in the problem instance; the operator
description specifies connectivity (which other fluents the new
value of a fluent depends on) and parameters (what those fluent
values actually are.)

• Generalizes broadly
• Takes advantage of sparsity

• The effects of most actions don’t depend on most factor values
• Relatively few factors are affected by any action

• Provides leverage for defining effective domain-independent
heuristics

6.4110 Spring 2025 11

Delete relaxation

• The thing that makes planning difficult is interference among the
operators—executing an action might potentially undo some
effect that you had already achieved or wanted to maintain from
the initial state.

• A relaxation of the planning problem is to assume that this never
happens, by ignoring the delete effects of an operator, so that our
update is:

s ′ = s ∪ add(a)

• In this relaxation, a fluent never become false once it becomes
true! So, e.g. a robot can be in multiple locations. Weird, but
convenient.

• An even more relaxed relaxation: allow all actions whose
preconditions are satisfied to be executed in parallel!

The relaxed planning graph (RPG) is computed by computing a
sequence of relaxed, parallel state updates.
6.4110 Spring 2025 12

Example relaxed plan graph

Image source: J.C.Latombe, Stanford

6.4110 Spring 2025 13

Compute relaxed planning graph

Compute-RPG(s0,A,G)

1 // s0 and G are both sets of ground fluents
2 // A is a set of ground operator descriptions
3 F0 = s0; t = 0
4 while G ⊈ Ft
5 At = {a ∈ A | pre(a) ⊆ Ft} // Do all applicable actions!
6 Ft+1 = Ft ∪

⋃
a∈At

add(a) // Add all add effects!
7 if Ft+1 = Ft: return // Goal is infeasible /
8 t = t+ 1
9 return F0, . . . , Ft, A0, . . . ,At−1,

6.4110 Spring 2025 14

Heuristics based on RPG

• Add up the levels at which each goal fluent appear: not
admissible

Hadd(s,G) =
∑
f∈G

argmin
t

f ∈ Ft

• Max of the levels at which each goal fluent appear: admissible
but weak

Hmax(s,G) = max
f∈G

argmin
t

f ∈ Ft

• Optimal solution to the delete-relaxation problem (without
parallel actions): still NP-hard!

• Hff: Approximate solution to the delete-relaxation problem,
searching backward in the RPG for a relaxed plan

6.4110 Spring 2025 15

Computing Hff

Hff(s,G, RPG)

1 M = maxf∈G RPG.level(f); plan = {}

2 for t ∈ 0 . . .M: // Fluents we need to make true at each level
3 Gt = {f ∈ G | RPG.level(f) = t}
4 for t = M . . . 1:
5 for f ∈ Gt: // Find any applicable a with result f
6 a = {a | RPG.level(a) = t− 1, f ∈ add(a)}[0]
7 plan = plan ∪ {a} // Add action a to plan
8 for p ∈ pre(a)
9 GRPG.level(p) = GRPG.level(p) ∪ {p}

10 return |plan|

RPG.level(f) = min
t

f ∈ Ft

RPG.level(a) = min
t

a ∈ At

6.4110 Spring 2025 16

Extensions

There are lots of extensions to classical planning!
• Conformant planning: have, for each predicate P, BP and BNotP.
• Temporal planning: discrete time steps, actions take time
• Cost-sensitive planning: add action costs
• Conditional planning: add observe actions

6.4110 Spring 2025 17

Actual PDDL syntax example

LISP and prefix syntax used to be a thing!

(:action unload

:parameters (?obj ?plane ?loc)

:precondition (and

(package ?obj)

(plane ?plane)

(location ?loc)

(at ?plane ?loc)

(aboard ?obj ?plane))

:effect (and

(not (aboard ?obj ?plane))

(at ?obj ?loc)))

6.4110 Spring 2025 18

Next time

• Action planning in continuous state and action spaces

6.4110 Spring 2025 19

