
L14 – Reward maximization and MCTS

AIMA4e: 5.4

6.4110 Spring 2025 1

What you should know after this lecture

• Reward-formulation problems; relation to min-cost-path
• Intro to Monte-Carlo Tree Search

6.4110 Spring 2025 2

Decision making!

• Given a current belief about the world
• And some objective
• What action should the agent take next?
• Apply the principle of rationality: select

actions that will maximize your expected
future utility

6.4110 Spring 2025 3

First problem setting: fully observable, deterministic

Atomic, discrete
• Agent knows:

• State set: S
• Initial state: s0
• Action set: A
• Transition model: T : S×A → S
• Goal set: G ⊂ S
• Cost function C : S×A× S → R

• We need to find next action to take
• Find plan a1, . . . ,am from s0 to some state in G such that

T(s0,a1) = s1, . . . , T(sm−1,am) = sm and sm ∈ G
• Usually we try to minimize∑

i

C(si,ai, si+1)

If path costs are not additive, then many algorithmic tricks don’t
apply and problem is much harder.

6.4110 Spring 2025 4

Measuring problem-solving performance

• Completeness: If there is a solution to your problem, is the
algorithm guaranteed to find it?

• Cost optimality: If there is a solution, is the algorithm
guaranteed to find the solution with the lowest cost?

• Computational complexity: As the size of the problem grows,
how do the computation and time and space requirements grow?
The answer to this depends on how we encode the input!

• In CS algorithms tradition, problems are described as graph search
problems, and complexity is characterized in terms of the number
of vertices (states) and edges in the graph; usually nearly linear in
the size of the input.

• In our applications, we will often have a huge or even infinite S but
it is not input to the algorithm. Instead, we provide s0 and T , and
incrementally expose the graph as we search. Characterize
complexity in terms of branching factor |A| and depth (also called
“horizon” or “plan-length.”) Usually exponential in the horizon.

6.4110 Spring 2025 5

Best-first search framework

• Critical to make a distinction between state (element of S) and
node of the search tree, which represents a path from s0 to some
state s. (Every search node has an associated state. It is possible
to have multiple nodes with the same state (representing
different paths to reach that state.)

• This framework takes a priority function f. Different values of f
will yield different search algorithms.

6.4110 Spring 2025 6

Best-first search framework

Best-First-Search(S,A, s0, T ,G,C, f)

1 n = Node(s0)
2 frontier = PriorityQueue(f)
3 frontier.add(n)
4 reached = {s0 : n}

5 while not frontier.empty():
6 n = frontier.pop() // Get node with lowest f value
7 s = n.s
8 if s ∈ G: return n

9 for a ∈ A: // Expand s

10 s ′ = T(s,a)
11 path cost = n.path cost + C(s,a, s ′)
12 if not s ′ ∈ reached or path cost < reached[s ′].path cost:
13 n ′ = Node(s ′,n,a, path cost)
14 reached[s ′] = n ′ // visit s ′

15 frontier.add(n ′)

6.4110 Spring 2025 7

A*

• Best-First-Searchwhere

f(n) = n.path cost + h(n.s)

• Always take the path out of frontier that we estimate has the
cheapest sum of the length of the path so far and our estimate of
how for from here to the goal.

• Guaranteed to find a least-cost path if h is admissible.
• Heuristic h is admissible iff

h(s) ⩽ h∗(s) for all s ∈ S,

where h∗(s) is the actual least path cost from s to a goal state.
• Heuristic h is consistent iff

h(s) ⩽ c(s,a, s ′) + h(s ′)

6.4110 Spring 2025 8

More about A*

• Search contours are “stretched” in the direction of goal states.
• Let C∗ be cost of optimal solution path:

• A* expands all nodes reachable from s0 on a path where every
node on the path has f(n) < C∗

• A* expands no nodes with f(n) > C∗

• If h(s) = h∗(s) then A* will not expand any nodes that are not on
an optimal path.

• If h(s) is close to h∗(s) then there will generally not be many
nodes for which f(n) ⩽ C∗.

• If h(s) = 0 then h is admissible; in this case, A* degenerates into
UCS.

6.4110 Spring 2025 9

Heuristic Functions

• A heuristic function, ideally, is:
• Admissible and consistent
• Close to h∗

• Efficient to compute
• A good source of heuristics is problem relaxation: make your

problem “easier” in two ways:
• Solutions have lower cost in relaxed problem
• Solutions are faster to find in relaxed problem

• Examples:
• Relax problem of finding a path on a road-map to finding one that

can go off-road.
• Relax problem of finding a driving route that lets you keep the car

fueled to one in which you ignore fuel.
• Another strategy: learn h (perhaps in the form of a neural

network) using supervised or reinforcement-learning based on
previous experience solving related problems.

6.4110 Spring 2025 10

Reward-maximization formulation

Some problems are easier to formulate in terms of maximizing an
amount of reward that gets accumulated over a trajectory of a fixed
number of steps (horizon) H.

• Problem: (S,A, T ,R,H, s0)

• Reward instead of cost: R : S×A → R
• We want to find a length H path that maximizes

H−1∑
t=0

R(st,at, st+1)

• We can relax this fixed-horizon assumption later in the course,
with a probabilistic model of termination.

6.4110 Spring 2025 11

Reduction from reward maximization to
min-cost-path problem

Given reward maximization problem (S,A, T ,R,H, s0) we can
generate min-cost-path problem (S ′,A ′, T ′,G,C, s ′o) so that solution
to the min-cost-path problem is a solution to the original
reward-maximization problem.

• S ′ = S× {0, . . . ,H}

• A ′ = A

• s ′0 = (s0,H) second component is “steps to go”
• T ′((s, t),a) = (T(s,a), t− 1)
• G = {(s, t) | t = 0}
• C(s,a) = Rmax − R(s,a) where Rmax = maxs,a R(s,a)

Note that costs are always non-negative.
We can solve using uniform-cost search!
Very hard to come up with a heuristic, since in principle, it might be
possible for all the rest of your actions to pay offwith Rmax which
would have a C of 0, meaning to be admissible, we need h = 0.
6.4110 Spring 2025 12

Reduction from min-cost-path to
reward maximization

Given a min-cost-path problem (S,A, T ,G,C, so) we can generate a
reward maximization problem (S ′,A ′, T ′,R,H, s ′0) so that solution to
the min-cost-path problem is a solution to the original
reward-maximization problem.

• S ′ = S ∪ {over}
• A ′ = A
• s ′0 = s0

•

T ′(s,a) =

{
T(s,a) if s < G and s , over
over otherwise

• R(s,a, s ′) = −C(s,a, s ′) if s ′ , over else 0
Setting H is tricky:

• Could keep trying to re-solve with increasing H.
• You can do MCTS (or some other solution methods) on indefinite horizon

problems, where instead of having a fixed horizon H, there are states marked as
terminal and the “rollout” ends when one is reached (but you *still* need a max
horizon in practice).6.4110 Spring 2025 13

Monte-Carlo Tree Search

Another strategy for search guidance is to “learn” from your current
search.

• Rather than systematically growing the tree, consider whole
paths from s0 to horizon

• Assumes a type of smoothness: paths with the same first
action(s) will tend to have similar values

• If your problem is smooth, and, so far, paths starting with a1
have had higher total reward than paths starting with a2, then
spend more time investigating paths starting with a1!

• Particularly useful when no other heuristic is available and/or
action space (hence branching factor) is very large.

• Used in games and probabilistic problems, as well.
• Assumes rewards in range [0, 1]. (Optimal policy is unchanged if

we scale current rewards linearly to be in this range.)

6.4110 Spring 2025 14

Upper confidence bounds

Consider a situation in which you are trying to select among K
actions, a1, . . . ,ak. Assume:

• You have, so far, executed N total actions
• You have, so far, executed action k for Nk trials
• The total utility you got for executing action k is Uk

What is an optimistic but realistic upper bound on the value of
executing action k?

ucb(N,Nk,Uk) =

{
Uk

Nk
+ C

√
logN
Nk

if Nk > 0∞ otherwise

If individual utility values are in range [0, 1] then a reasonable choice
is C = 1.4. (Lots of interesting theory behind this!)

6.4110 Spring 2025 15

Simple UCB example
• We first pick a1 and get value 0.9:

ucb(s0,a1) = .9 +
√

log 1/1 ≈ 0.9 ucb(s0,a2) = ∞
• Pick a2 and get value 0.1:

ucb(s0,a1) = .9 +
√

log 2/1 ≈ 1.73 ucb(s0,a2) = .1 +
√

log 2/1 ≈ .93

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 3/2 ≈ 1.64 ucb(s0,a2) = .1 +
√

log 3/1 ≈ 1.15

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 4/3 ≈ 1.58 ucb(s0,a2) = .1 +
√

log 4/1 ≈ 1.28

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 5/4 ≈ 1.53 ucb(s0,a2) = .1 +
√

log 5/1 ≈ 1.37

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 6/5 ≈ 1.50 ucb(s0,a2) = .1 +
√

log 6/1 ≈ 1.44

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 7/6 ≈ 1.47 ucb(s0,a2) = .1 +
√

log 7/1 ≈ 1.49

• Woo hoo! Pick a2! Maybe it’s awesome!6.4110 Spring 2025 16

Monte-Carlo Tree Search: UCT

MCTS(s0, (A, T ,R,H), iters)
1 root = Node(s0, horizon = H, parent = None, children = { },U = 0,N = 0)
2 for iter ∈ {1, . . . , iters}:
3 leaf = select(root)
4 child = expand(leaf ,A, T)
5 value = simulate(child,A, T ,R)
6 backup(child, value)
7 max child = max(root.children, key = λn. n.U/n.N)
8 return root.children[max child] // Returns the associated action

select(n)

// Follow optimistically best path through tree
1 if n.children
2 return select(max(n.children, key = λc.ucb(n.N, c.N, c.U))
3 else
4 return n

6.4110 Spring 2025 17

Monte-Carlo Tree Search:UCT (Cont)

expand(n,A,T)
// Unless remaining horizon is 0, add child nodes and return one

1 if n.horizon = 0:
2 return n
3 else
4 for a ∈ A:
5 s ′ = T(n.s,a)
6 n ′ = Node(s ′,n.horizon − 1, parent = n, children = { },U = 0,N = 0)
7 n.children[n ′] = a
8 return random choice(n.children)

simulate(n,A,T ,R)
// Randomly finish path and return cumulative reward

1 s = n.s; total reward = 0
2 for h ∈ (n.horizon, . . . , 1):
3 a = random choice(A)
4 s ′ = T(s,a)
5 total reward += R(s,a,s ′)
6 s = s ′

7 return total reward

6.4110 Spring 2025 18

Monte-Carlo Tree Search: UCT (Cont)

backup(n, v below)

// Add value v to n’s statistics and pass it up
1 n.N += 1
2 if n.parent:
3 a = n.parent.children[n] // Action that led to n
4 v = v below + R(n.parent.s,a,n.s) // Value of executing a in parent
5 n.U += v
6 backup(n.parent, v)

6.4110 Spring 2025 19

UCT properties

• Guaranteed to (eventually) find optimal strategy with
probability 1, for appropriate choice of C

• Instead of random “rollouts”, you can use a semi-smart strategy,
or a (learned) heuristic value function

• This is (roughly) what Alpha-Go does
• Can have poor short-term performance in cases where value

function is not smooth (or short-term experience is misleading).
See From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning, R’emi Munos,
Foundations and Trends in Machine Learning, 2014.

6.4110 Spring 2025 20

