L11/12: First-order Logic Proof

AIMA4e: Chapter7.5,9.1,9.2,9.5

6.4110 Spring 2025

What you should know after this lecture

e First-order resolution theorem proving

o Forward-chaining and Prolog (basic ideas)

6.4110 Spring 2025

Syntactic proof

Recall, a proof procedure takes two sentences, « and 3, and tells you
whether it can prove 3 from «:

kB

Proof procedure is
e sound iff for all «, 3, if & - B then o = 3
o complete iff for all o, B, if = 3 then o - 3

We have looked at proof procedures that operate via enumerating
models. But that is incomplete and/or inefficient in many cases.
So, we will look at purely syntactic proof, that operates entirely on
logical sentences.

6.4110 Spring 2025

One proof strategy: resolution refutation

To prove o = f3:
e Write o as one or more premises

e Inference rules tell you what you can add to your proof given
what you already have. Logic is monotonic.

¢ When the rules have allowed you to write down (3, then you're
done.

Proof by refutation:

e Toprove o = f

o Instead show that o« /A —f |= False
Inference rules:

e Lots of interesting proof systems (sets of inference rules)
¢ We would like one that is sound and complete:
(b B) = (= B)

¢ Refutation using the resolution inference rule is sound and
complete!!
6.4110 Spring 2025

Propositional resolution: reminder

General inference rule form: If you have « and 3 written down in
your proof, you can now write vy.

x B

v

Modus Ponens:
P=Q P

Q

Propositional Resolution:

(PVQiV...,VQn) (-PVR{V...VRp)
(Q1V...VQu VR V...VRy)

6.4110 Spring 2025

Clausal form

Resolution requires sentences in first-order clausal form.

1.
2.
3.

6.4110 Spring 2025

Rename variables so that they are all distinct.
Convert implications into disjunctions.

Push negations all the way in, using FO DeMorgan:
—Ix.a = Vx.~axand —Vx.x = Ix.

Move all quantifiers to the front, maintaining their order.
Replace every existentially quantified variable with a Skolem

function of any universally quantified variables that come before

it.
Drop the universal quantifiers.
Convert to CNFE.

Clausal form practice

Every dog has its day.

V¥x.Dog(x) = Jy.Day(y) AHas(x,y)
vx.—Dog(x) V Jy.Day(y) A Has(x,y)
vx.3y.—Dog(x) V (Day(y) A Has(x,y))
vx.—Dog(x) V (Day(f1(x)) A Has(x, f1(x)))
~Dog(x) V (Day(f1(x)) A Has(x, 1(x)))
(—=Dog(x) V Day(f1(x))) A (—mDog(x) V Has(x, f1(x)))

There is at least one dog! There are no days.
Ix.Dog(x) —3Ix.Day(x)
Dog(f2) vx.~Day(x)

—Day(x)

6.4110 Spring 2025

Unification: matching literals

Returns substitution: {v{/ty,..., v /tx}; variables v; terms t;. The
most general substitution that makes « and 3 equal.

UNIFY(o, 3, 0)
if 0 ='fail’ return 'fail’
if & = 3 return 0
if 1s-vAR() return uNIFY-vaRr(x, 3, 0)
if 1s-var(3) return UNIFY-vAR(f, &, 0)
if strucT(t) and sTrUCT(B):
return untry(«x[1 :], B[1 :], uniry(«[0], 3[0], 0))
else return "fail’

UNIFY-VAR(c, [3, 0)
if {oc/v} € 6 return unirFY(y, 3, 0)
if {/v} € 0 return unIFY(y, , 0)
if occurs(a, B) return ‘fail’
else return 0 U {«/fB}

6.4110 Spring 2025

Unification examples

104 8] 0
A(B,C) Alx,y) {x/B,y/C}
A(x, f(D,x)) A(E, f(D,y)) {x/E,y/E}
Alx,y) A(f(C,y),2) {x/f(C,y),y/z}

P(A,x,f(g(y))) Ply,f(z),f(z)), {y/A,x/f(z),z/g(y)}
P(x, g(f(A)), f(x)) P(f(y),zy) fail
P(x, f(y)) P(z, g(w)) fail
P(x) Q(x) fail

6.4110 Spring 2025

Resolution!

(LV...V1l) (mV...Vmy)
suBsT(0, L V...V1, Vme V...V my)

where unIrFy(ly, ~my) = 0.

Plus one more trick called factoring: basically, internal unification.

Theorem: Resolution plus factoring is refutation complete.

If you have equality, you need one more trick: paramodulation.

6.4110 Spring 2025 10

Dog days

Do these two sentences

vx.Dog(x) = Jy.Day(y) A Has(x,y)
Ix.Dog(x)

entail

Ix.Day(x)

6.4110 Spring 2025

Prove it!

Write down o« and —f3 in clausal form. Try to prove False.

—Dog(x) V Day(f1(x))

—Dog(x) V Has(x, f1(x))

Dog(f2)

—Day(x)

Day(fi(f2)) 1,3 {x/f2}
False 4,5 {x/f1(f2)}

ok W=

So, yes, if there’s a dog, there’s a day!

6.4110 Spring 2025

Horn clauses

A Horn clause is a clause (disjunction of literals) with exactly one
positive literal. Looks like

acABAYy=2

Datalog: Horn clauses with no function symbols. More efficient
inference. Decidable.

Prolog: Horn clauses. Depth-first backward chaining. Basis of logic
programming which then adds extra tricks for handling negation,
equality, and even side-effects.

6.4110 Spring 2025 13

Completeness and decidability

Goedel’s Completeness Theorem: There exists a complete proof
system for FOL.

Robinson’s Completeness Theorem: Resolution is a refutation
complete proof system for FOL.

FOL is semi-decidable: if o |= 3 then eventually resolution refutation
will find a contradiction. But if not, it might run forever!

Goedel’s First Incompleteness Theorem: There is no consistent,
complete proof system for FOL with arithmetic (4 and x).

Arithmetic allows you to construct code-names for sentences within
the logic, so that P = ”P is not provable”. Then

e If P is true: P is not provable (incomplete)

o If P is false: P is provable (inconsistent)

6.4110 Spring 2025 14

