
L21: First-order Logic Intro

AIMA4e: Required: 8.1.2, 8.2
Suggested: 8.1, 8.3

6.4110 Spring 2025 1

What you should know after this lecture

• Definition of first-order logic: syntax and semantics
• What is FOL good for?
• How to formulate a FOL problem

6.4110 Spring 2025 2

Reasoning about object-based, open-world,
partially-specified world states

Factored states
Boolean-valued factors
Objects as indices
Infinite domains

Note good section 8.1 in AIMA4e: talks about relationships among
different logics, including probability theory and fuzzy logic.

6.4110 Spring 2025 3

What is first-order logic and what is it good for?

• Can model infinite possible worlds (environment states)
• Representation is lifted: we can abstract over objects in the

world, describing them in terms of their properties and relations
among them

• Contains propositional logic
• Inference procedures for determining the truth of some

statement given the truth of others: semantics-preserving
syntactic manipulation. Domain independent!

6.4110 Spring 2025 4

First-order logic syntax: symbols and terms

Three kinds of symbols. We will capitalize all of them. Both predicate
and function symbols also have an arity (number of arguments they
take).
• constant symbols: stand for objects
• predicate symbols: stand for relations on objects

predicates with 0 arity are propositional symbols; include True
and False

• function symbols: stand for functions

Terms stand for objects:
• constant symbols are terms
• variables are terms (we use lowercase letters)
• if φ is an arity-k function symbol and τ1, . . . , τk are terms, then
φ(τ1, . . . , τk) is a term

6.4110 Spring 2025 5

FOL syntax: sentences

• if π is an arity-k predicate symbol, and τ1, . . . , τk are terms, then
π(τ1, . . . , τk) is a sentence

• if τ1 and τ2 are terms, then τ1 = τ2 is a sentence
• if α is a sentence and γ is a variable, then

• ∀γ.α is a sentence
• ∃γ.α is a sentence

• if α and β are sentences then
¬α, α∨ β, α∧ β, α⇒ β and α⇔ β
are sentences

6.4110 Spring 2025 6

FOL semantics: models

Modelm = (U, I) a universe and an interpretation
• U is a (possibly infinite) set of objects
• If σ is a constant symbol, I(σ) ∈ U.
• If σ is an arity-k predicate symbol, I(σ) ⊆ Uk.
• If σ is an arity-k function symbol, I(σ) : Uk → U.

Arity-0 predicates are proposition symbols. How does that work?

� Answer: I(σ) is a subset of U0. Formally, U0 = {()}; that is,
the set containing the empty tuple. This set has two possible
subsets, so the interpretation of σ can either be {()} or { }.

6.4110 Spring 2025 7

FOL compositional semantics

Terms denote objects; we’ll extend the use of I:
• I(φ(τ1, . . . , τk)) = I(φ)(I(τ1), . . . , I(τk))

When is a sentence α is true inm = (U, I)?
• Sentence π(τ1, . . . , τk) is true inm iff (I(τ1), . . . , I(τk)) ∈ I(π)

• Sentence τ1 = τk is true inm iff I(τ1) = I(τk)

• Sentence ∀γ.α is true inm iff for all o ∈ U, the sentence α holds
inm extended by {γ/o}.

• Sentence ∃γ.α is true inm iff there exists some o ∈ U, for which
the sentence α holds inm extended by {γ/o}.

• Cases for the propositional connectives are as in PL

6.4110 Spring 2025 8

Practice

1. All cats are big.
2. There is a small thing or a cat.
3. All big things are cats.
4. Everything is a big cat.
5. All cats are small.
6. There is a big cat.
7. All small things are cats.
8. There is a big thing or a cat.

6.4110 Spring 2025 9

Example application: Airfare rules

Ontology: passenger, flight, city, airport, terminal, flight segment (list
of flights, all in one day), itinerary (passenger + list of flight
segments), list, number

Predicates: Age, Nationality, Wheelchair, Origin, Destination,
Departure-Time, Arrival-Time, Latitude, Longitude, In-country,
In-City, Itinerary, Nil

Function: Cons; so Cons(A, Cons(B, Nil)) is a list with 2 elts

6.4110 Spring 2025 10

Well-formed itineraries

A trip is well-formed iff all of the departures and arrivals match up
(for now, the same airport, though one could relax it to be the same
city or metro area) and all the layovers are legal.

Well-formed(Nil)
∀f.Well-formed(Cons(f, Nil))
∀f1, f2, r. Contiguous(f1, f2)∧ Layover-legal(f1, f2)∧

Well-formed(Cons(f2, r))⇒ well-formed(Cons(f1, Cons(f2, r)))

6.4110 Spring 2025 11

Flight practice

1. Two flights are contiguous when the destination of the first is the
same as the origin of the second.

2. A layover between two flights is legal if it’s not too short and not
too long.

3. You need at least 30 minutes to change planes.
4. A layover between f1 and f2 is not too long if it’s less than 3

hours, or if there is no other flight leaving this aiport for the next
immediate destination before f2 departs.

6.4110 Spring 2025 12

Example application: Protocol verification

Elevators this time!
1. Between the time an elevator is called at a floor and the time it

opens its doors at that floor, the elevator can arrive at that floor at
most twice.

2. The cabin never moves with its door open.
3. Whenever the nth floor’s call button is pressed, the cabin will

eventually stop at the nth floor and open the door.

6.4110 Spring 2025 13

Using finite models for verification

One simple strategy for working with first-order theories is to test for
bugs in smaller models.
• Given something like a cryptographic protocol or file system

with unboundedly many objects.
• Make a finite-sized instance with constant symbols
C = {O1, . . . ,Ok}

• Convert all quantifiers:
• Change ∀x.α(x) to α(O1)∧ . . . ∧ α(Ok)
• Change ∃x.α(x) to α(O1)∨ . . . ∨ α(Ok)

• Add an assertion that there is a bug (e.g., that two users can
modify a file at the same time, or two trains can be on the same
track segement)

• Use a SAT solver to see if the whole thing is satisfiable. If so, you
found a bug!

• If no bug in an instance with a universe of size k you cannot say
anything about what will happen with a larger universe.

6.4110 Spring 2025 14

More applications

• AWS proves whether you should have access to some particular
asset.

• Business rules
• Hardware verification
• Crypto protocol verification
• Etc.

6.4110 Spring 2025 15

More kinds of logic

• Non-boolean valued: probability, fuzzy, trinary
• Modal:

• Temporal: always, until, eventually,
• Alethic: necessary, possible
• Deontic: obligatory, permitted
• Epistemic: K(a,φ) (agent a knows that φ)

• Special purpose (usually with efficient inference procedures)
• Description logic (basically, taxonomies)
• Reasoning about regular expressions

6.4110 Spring 2025 16

Entailment practice

Consider the following set of axioms:
• ∀x.p(x)↔ ∃y.r(x,y)
• ∃x,y.p(x)∧ p(y)∧ x , y
• ∀x,y.r(x,y)→ ¬r(y, x)
• ∀x,y, z.r(x,y)∧ r(x, z)→ y = z

• ∀x,y, z.r(x,y)∧ r(z,y)→ x = z

• ¬p(A)

1. These axioms all hold in only two interpretations with the
universe U = {1, 2, 3} where I(A) = 1. What are they?

2. Do these axioms entail sentence ∃x.r(x,A)? (Not in general (that
is, if the universe can be bigger than 3 elements)).

6.4110 Spring 2025 17

Next time

• Syntactic proof

6.4110 Spring 2025 18

