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1 Viterbi Algorithm
The Viterbi algorithm is really just max-product in discrete HMM’s! Let’s look at a concrete example

and follow the notation from lecture.
Consider the below HMM. Assume both states sy and s; are binary.

A

Here, the transition probability matrix A is given by.

st\st+1 ‘ T F
A= T 0.5 0.5

F 0 1

Emission probabilities are given by the matrix B:

‘OZT o=F
B=T 0.5 0.5
F

0 1

The initial probabilities are uniform:

©(T) =05, =(F)=0.5.

We observe the sequence (0p,01) = (F,T) and seek the most likely sequence (sg, s7) using the
Viterbi algorithm.

1.1 Step 1: Initialization

At t = 0, we compute:
00(T) =7n(T) - Bp(F)=0.5x 0.5 =0.25.
do(F)=m(F)-Bpr(F)=05x1=0.5.

1.2 Step 2: Forward Pass (Recursion)
At t =1, given 01 =T, we compute §;(T) and 61 (F).



1.2.1 Computing 6;(7T)
0n(T) = H?;E:X [00(s0) - P(T | s0)]- P(T | T).
- From sq =T
6o(T)-P(T|T)=0.25x 0.5 =0.125.
- From sg = F"
0o(F)-P(T|F)=05x0=0.
Thus,

51(T) = max(0.125,0) x 0.5 = 0.0625.

Best previous state:
(1) =T.
1.2.2 Computing 6;(F)
01(F) = max[do(s0) - P(F | s0)] - P(T'| F).
- From s =T
So(T) - P(F | T) =0.25 x 0.5 = 0.125.
- From sg = F"
do(F) -P(F|F)=05x1=0.5.

However, since P(T | F) = 0, we get:

81 (F) = max(0.125,0.5) x 0 = 0.

Best previous state does not matter because the probability is O.

1.3 Step 3: Backtrace
s] = argmax d1 (s).
Since
51(T) = 0.0625, 61 (F) =0,

we get

Then, using 1 (T):
so =11(s]) = (T) =T.

1.4 Final Result

The most likely state sequence is:

(s0,87) = (T, 7).

This should make sense — from the matrix A we see that if the state is ever F, it must stay F
and there is no probability it becomes T. We also know from B that if a particular state is F, then
we will observe it as F with probability 1. Thus, given we observe o; = T, we can conclude s; must
have been T. Given this, we can conclude sy must have also been T' because otherwise A would
have made it impossible to transition to s; = T.



2 1D Robot Localization with a Kalman Filter

2.1 Problem Setup

We consider a robot moving along a straight line, estimating its position using a Kalman Filter. The
robot moves forward by 1 meter per time step on average, but with some random noise. A sensor
provides noisy position measurements.

Process Model The state at time ¢, denoted x;, follows:

Ty =21+ 1+ wiq, (1)
where w;_1 ~ N(0,W) represents process noise, modeled as Gaussian with mean zero and

variance W.

Measurement Model The sensor provides noisy measurements:
Yy = Hay + vy, (2)
where:
e H is the measurement matrix (in this case, a scalar),
e v; ~ N (0, R) is measurement noise.
For this example, we assume:
e W =1 (process noise variance),
e R =2 (measurement noise variance),

e H =1 (sensor directly observes position),

Initial state estimate: Zqo = 0,

Initial covariance: Qoo = 10.

Observations At each time step, the robot receives the following sensor readings:
Yy = 05, Y2 = 22, Yz = 3.5. (3)

We now apply the Kalman Filter step by step.

2.2 Kalman Filter Equations
At each time step ¢, the filter follows:

Prediction Step

Tyjpo1 = Ty_1p0-1 + 1, (4)
Qtjt—1 = Qi—1jp—1 + W. (5)
Measurement Update Step
1 H
K, = Qt“—17 (6)
HQyi1H+ R
Typ = Tejp—1 + K (ye — HEgp—v), (7)
Qt\t = (1 - KtH)Qt\tfl- (8)
Since H =1 in this case, these simplify to:
Qt)t—1
Ki=—"——, 9
! Q-1 + R ©)
Byp = Teje—1 + Ko (ye — Teje—1), (10)
Qe = (1 — K¢)Qypp—1- (11)



2.3 Numerical Example

Let’s walk through computing the first three time steps.

2.3.1 Time Step 1 (t=1)
Prediction
531‘():@04-1:04—1:1, (12)

Measurement Update (Given y; = 0.5)

11 11
K, = = — ~0.84 14
g 3 YOG (14)
2y =1+0.846(0.5 — 1) = 1 — 0.423 = 0.577, (15)
Q1)1 = (1—0.846) x 11 = 1.69. (16)
2.3.2 Time Step 2 (t =2)
Prediction
By = 2y +1=0.577+1 = 1.577, (17)
QQH = Ql\l + W =1.69+1=2.69. (18)
Measurement Update (Given y, = 2.2)
2.69 2.69
Ko=——"—=—=0. 1
2= 56012 460 00T (19)
Bajp = LBTT +0.573(2.2 — 1.577) = 1.934, (20)
Qap2 = (1 — 0.573) x 2.69 = 1.149. (21)
2.3.3 Time Step 3 (t =3)
Prediction
Bajg = Fopp + 1= 1934+ 1 = 2.934, (22)

Measurement Update (Given y; = 3.5)
2149  2.149

K = = ~ U. 1 24
3T 014912 4149~ 018 (24)
Fa)3 = 2.934 + 0.518(3.5 — 2.934) = 3.227, (25)
Qsj3 = (1 —0.518) x 2.149 = 1.036. (26)

2.4 Discussion and Observations

e The covariance decreases over time, reflecting increased confidence in the estimate.

e The Kalman Gain K; balances the prediction vs. the measurement. As @Q; decreases, the
filter trusts its own prediction more.

e The estimated positions are pulled towards the expected motion despite noisy observations.



