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1 Viterbi Algorithm

The Viterbi algorithm is really just max-product in discrete HMM’s! Let’s look at a concrete example
and follow the notation from lecture.

Consider the below HMM. Assume both states s0 and s1 are binary.

s0 s1

o0 o1

A

B B

Here, the transition probability matrix A is given by.

A =
st\st+1 T F
T 0.5 0.5
F 0 1

Emission probabilities are given by the matrix B:

B =
o = T o = F

T 0.5 0.5
F 0 1

The initial probabilities are uniform:

π(T ) = 0.5, π(F ) = 0.5.

We observe the sequence (o0, o1) = (F, T ) and seek the most likely sequence (s∗0, s
∗
1) using the

Viterbi algorithm.

1.1 Step 1: Initialization

At t = 0, we compute:

δ0(T ) = π(T ) ·BT (F ) = 0.5× 0.5 = 0.25.

δ0(F ) = π(F ) ·BF (F ) = 0.5× 1 = 0.5.

1.2 Step 2: Forward Pass (Recursion)

At t = 1, given o1 = T , we compute δ1(T ) and δ1(F ).
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1.2.1 Computing δ1(T )

δ1(T ) = max
s0

[δ0(s0) · P (T | s0)] · P (T | T ).

- From s0 = T :

δ0(T ) · P (T | T ) = 0.25× 0.5 = 0.125.

- From s0 = F :

δ0(F ) · P (T | F ) = 0.5× 0 = 0.

Thus,

δ1(T ) = max(0.125, 0)× 0.5 = 0.0625.

Best previous state:

ψ1(T ) = T.

1.2.2 Computing δ1(F )

δ1(F ) = max
s0

[δ0(s0) · P (F | s0)] · P (T | F ).

- From s0 = T :

δ0(T ) · P (F | T ) = 0.25× 0.5 = 0.125.

- From s0 = F :

δ0(F ) · P (F | F ) = 0.5× 1 = 0.5.

However, since P (T | F ) = 0, we get:

δ1(F ) = max(0.125, 0.5)× 0 = 0.

Best previous state does not matter because the probability is 0.

1.3 Step 3: Backtrace

s∗1 = argmax
s
δ1(s).

Since

δ1(T ) = 0.0625, δ1(F ) = 0,

we get

s∗1 = T.

Then, using ψ1(T ):

s∗0 = ψ1(s
∗
1) = ψ1(T ) = T.

1.4 Final Result

The most likely state sequence is:

(s∗0, s
∗
1) = (T, T ).

This should make sense — from the matrix A we see that if the state is ever F, it must stay F
and there is no probability it becomes T. We also know from B that if a particular state is F, then
we will observe it as F with probability 1. Thus, given we observe o1 = T , we can conclude s1 must
have been T . Given this, we can conclude s0 must have also been T because otherwise A would
have made it impossible to transition to s1 = T .
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2 1D Robot Localization with a Kalman Filter

2.1 Problem Setup

We consider a robot moving along a straight line, estimating its position using a Kalman Filter. The
robot moves forward by 1 meter per time step on average, but with some random noise. A sensor
provides noisy position measurements.

Process Model The state at time t, denoted xt, follows:

xt = xt−1 + 1 + wt−1, (1)

where wt−1 ∼ N (0,W ) represents process noise, modeled as Gaussian with mean zero and
variance W .

Measurement Model The sensor provides noisy measurements:

yt = Hxt + vt, (2)

where:

• H is the measurement matrix (in this case, a scalar),

• vt ∼ N (0, R) is measurement noise.

For this example, we assume:

• W = 1 (process noise variance),

• R = 2 (measurement noise variance),

• H = 1 (sensor directly observes position),

• Initial state estimate: x̂0|0 = 0,

• Initial covariance: Q0|0 = 10.

Observations At each time step, the robot receives the following sensor readings:

y1 = 0.5, y2 = 2.2, y3 = 3.5. (3)

We now apply the Kalman Filter step by step.

2.2 Kalman Filter Equations

At each time step t, the filter follows:

Prediction Step

x̂t|t−1 = x̂t−1|t−1 + 1, (4)

Qt|t−1 = Qt−1|t−1 +W. (5)

Measurement Update Step

Kt =
Qt|t−1H

HQt|t−1H +R
, (6)

x̂t|t = x̂t|t−1 +Kt(yt −Hx̂t|t−1), (7)

Qt|t = (1−KtH)Qt|t−1. (8)

Since H = 1 in this case, these simplify to:

Kt =
Qt|t−1

Qt|t−1 +R
, (9)

x̂t|t = x̂t|t−1 +Kt(yt − x̂t|t−1), (10)

Qt|t = (1−Kt)Qt|t−1. (11)
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2.3 Numerical Example

Let’s walk through computing the first three time steps.

2.3.1 Time Step 1 (t = 1)

Prediction

x̂1|0 = x̂0 + 1 = 0 + 1 = 1, (12)

Q1|0 = Q0|0 +W = 10 + 1 = 11. (13)

Measurement Update (Given y1 = 0.5)

K1 =
11

11 + 2
=

11

13
≈ 0.846, (14)

x̂1|1 = 1 + 0.846(0.5− 1) = 1− 0.423 = 0.577, (15)

Q1|1 = (1− 0.846)× 11 = 1.69. (16)

2.3.2 Time Step 2 (t = 2)

Prediction

x̂2|1 = x̂1|1 + 1 = 0.577 + 1 = 1.577, (17)

Q2|1 = Q1|1 +W = 1.69 + 1 = 2.69. (18)

Measurement Update (Given y2 = 2.2)

K2 =
2.69

2.69 + 2
=

2.69

4.69
≈ 0.573, (19)

x̂2|2 = 1.577 + 0.573(2.2− 1.577) = 1.934, (20)

Q2|2 = (1− 0.573)× 2.69 = 1.149. (21)

2.3.3 Time Step 3 (t = 3)

Prediction

x̂3|2 = x̂2|2 + 1 = 1.934 + 1 = 2.934, (22)

Q3|2 = Q2|2 +W = 1.149 + 1 = 2.149. (23)

Measurement Update (Given y3 = 3.5)

K3 =
2.149

2.149 + 2
=

2.149

4.149
≈ 0.518, (24)

x̂3|3 = 2.934 + 0.518(3.5− 2.934) = 3.227, (25)

Q3|3 = (1− 0.518)× 2.149 = 1.036. (26)

2.4 Discussion and Observations

• The covariance decreases over time, reflecting increased confidence in the estimate.

• The Kalman Gain Kt balances the prediction vs. the measurement. As Qt|t decreases, the
filter trusts its own prediction more.

• The estimated positions are pulled towards the expected motion despite noisy observations.
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