
L08 – Continuous factored models

Barber 24.1,3,4; 27.6 AIMA 13.2.3, 14.4, 14.5.3

6.4110 Spring 2025 1

What you should know after this lecture

• Kalman filtering
• Particle filter

6.4110 Spring 2025 2

Linear Gaussian Hidden Markov Models

Process step: xt = Axt−1 + wt−1

Measurement step: yt = Hxt + vt

where
• xt — state vector at time step t, a random process
• yt — observation received at time step t, a random process
• wt — process noise ∼ N(0,W)
• vt — measurement noise ∼ N(0,R)
• A— process model (Note: this is not the same kind of

matrix as A in the HMM, although it plays a similar role.)
• H— measurement model
• π— initial distribution N(x0,Q0|0)
• We are ignoring the control term But−1 (ignore this

comment if it doesn’t worry you)
• A and H are assumed known and constant, but could vary
• Continuous time version possible, but hairy

6.4110 Spring 2025 3

Filtering
Want to compute P(xt | y0:t).
• We know it’s Gaussian because this is a linear Gaussian

Bayesian network!
• So P(xt | y0:t) = N(x̂t|t,Qt|t)

• Assume we know parameters of distribution at previous
step x̂t|t−1,Qt|t−1. Note that π is our base case.

• Recursively compute
1. Transition update finds

P(xt | y0:t−1) = N(x̂t|t−1,Qt|t−1)

2. Observation update finds

P(xt | y0:t) = N(x̂t|t,Qt|t)

• Can be understood as sum-product on associated Gaussian
factor graph

6.4110 Spring 2025 4

Transition update

• Current belief P(xt−1 | y0:t−1) = N(x̂t−1|t−1,Qt−1|t−1)

• Transition xt = Axt−1 + wt where wt ∼ N(0,W)

• Construct the joint on xt−1 and xt:

µ =

(
x̂t−1|t−1
Ax̂t−1|t−1

)
Σ =

(
Qt−1|t−1 Qt−1|t−1A

T

AQt−1|t−1 AQt−1|t−1A
T +W

)
• Marginalize out xt−1

P(xt | y0:t−1) = N(x̂t|t−1,Qt|t−1)

x̂t|t−1 = Ax̂t−1|t−1

Qt|t−1 = AQt−1|t−1A
T +W

Note that Var[A+B] = Var[A] + Var[B] when A and B are independent. Here

xt − 1 and wt are independent. Also Var[CA+ c], where C and c are constant, is

CVar[A]CT .6.4110 Spring 2025 5

Observation update

• Current belief P(xt | y0:t−1) = N(x̂t|t−1,Qt|t−1)

• Observation model yt = Hxt + vt where vt ∼ N(0,R)
• Construct the joint on xt and yt

µ =

(
x̂t|t−1
Hx̂t|t−1

)
Σ =

(
Qt|t−1 Qt|t−1H

T

HQt|t−1 HQt|t−1H
T + R

)
• Condition on actual observation yt = yt

P(xt | y0:t) = N(x̂t|t,Qt|t)

Qt|t = Qt|t−1 −Qt|t−1H
T
(
HQt|t−1H

T + R
)−1

HQt|t−1

x̂t|t = x̂t|t−1 +Qt|t−1H
T
(
HQt|t−1H

T + R
)−1 (

yt −Hx̂t|t−1
)

6.4110 Spring 2025 6

Observation update: simplified

• Define Kalman gain Kt = Qt|t−1H
T
(
HQt|t−1H

T + R
)−1.

• Use (tricky!) matrix algebra-fu to get useful relationships:

Kt = Qt|tH
TR−1

Qt|t = Qt|t−1 − KtHQt|t−1

x̂t|t = x̂t|t−1 + Kt

(
yt −Hx̂t|t−1

)
• Call yt −Hx̂t|t−1 the innovation: how surprising is our

observation?
• Kt maps yt into an opinion about xt: Big if observations

are accurate and prior on xt is weak.
• Intuition-building rewrite:

x̂t|t = (I− KtH) x̂t|t−1 + Ktyt

Some important properties of the Kalman filter:
• Transition adds uncertainty: Qt|t−1 is always “larger” than Qt−1|t−1

• Observation reduces uncertainty: Qt|t is always “smaller” than Qt|t−1

(or same)6.4110 Spring 2025 7

Kalman smoothing

Just as in discrete HMMs, we can run a similar
belief-propagation pass backward to compute P(xt | y0:T)

In Gaussian systems, the max of the individual marginals is the
max of the joint!!!

6.4110 Spring 2025 8

What if your system isn’t conjugate?

• Gaussian errors, but non-linear dynamics: extended
Kalman filter

• Somewhat non-Gaussian errors, non-linear dynamics:
unscented Kalman filter

• Arbitrary model: particle filter

6.4110 Spring 2025 9

Extended Kalman filter: optional

• Assume system with non-linearity limited to f and h

xt = f(xt−1) + w wt ∼ N(0,W)

yt = h(xt) + vt vt ∼ N(0,R)

• Taylor series expansion about the current state estimate x̂:

f(xt−1) = f(x̂t−1|t−1) +
∂f
∂x

∣∣∣
x̂t−1|t−1

(xt − x̂t−1|t−1) + . . .

h(xt) = h(x̂t|t−1) +
∂h
∂x

∣∣∣
x̂t
(xt − x̂t|t−1) + . . .

assumes that all partial derivatives exist.

A(x̂t−1|t−1) =
∂f
∂x

∣∣∣
x̂t−1|t−1

=

∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
. . .

xt

, H(x̂t|t−1) =
∂h
∂x

∣∣∣
x̂t|t−1

• Note that A and H are now time-varying!
6.4110 Spring 2025 10

Illustrative Example of EKF Weaknesses

• Shows possible reasons for EKF
issues (Julier and Uhlmann [1994])

• Consider motion of vehicle
following arc x = [x(t)y(t)ψ(t)]T ,
velocity V(t) and radius of
curvature Ra(t)
• Velocity disturbed by a

zero-mean uncorrelated process.
• Covariance ellipse in oriented in

direction of travel (Fig. 1).

• Later, 1/4 way around circle, Fig. 2
shows true position and
uncertainty ellipse at time t+ 1 —
covariance ellipse has been
expanded and rotated.

6.4110 Spring 2025 11

Illustrative Example of EKF Issues

• EKF predicts covariance using
linearized A matrix — equivalent to a
constant velocity model tangent to
the circle at time t.

• Effect shown in Fig. 3 — mean
predicted around arc, but covariance
ellipse predicted linearly in direction
of travel ⇒ EKF loses critical
information that largest component
of uncertainty is in direction of travel.

• Error can be corrected by adding
process noise to system (see Fig. 4),
but at the expense of performance.

6.4110 Spring 2025 12

Unscented Kalman filter: optional

• Example of a more general idea: assumed density filtering
• Even if your posterior doesn’t have the same parametric

form as your prior, find the distribution in the family of the
prior that is in some sense closest to the actual posterior

• This is an example of variational inference.
• One strategy is moment matching: estimate mean and

covariance of posterior, and pretend it’s a Gaussian with
those moments. (Can match more moments if that’s
helpful.)

• UKF is a very simple and even more approximate version
of this idea.

• It doesn’t stink!

6.4110 Spring 2025 13

Filtering by sampling

6.4110 Spring 2025 14

Importance Sampling (AIMA 13.4, Barber 27.6)

Keep all the samples, but weight them! Works in continuous
space, too!
• Weight the samples by how much the proposal and target

match for the given sample
• When we get a sample in a region where the proposal and

target match: weight the sample highly
• When we get a sample in a region where the proposal and

target don’t match much: give the sample little weight
• Introduce weights

w(x) =
P(x)

Q(x)

6.4110 Spring 2025 15

Importance Sampling

• If we have unnormalized proposal and target p̃
and q̃, then we have weights w̃.

• It’s easy to prove that

w(x) =
w̃(x)∑
x w̃(x)

• Given importance-weighted samples, we can
compute the statistics as before, but with
weights:

E[x] =
∑

w(x[i])x[i]

E[(x− µ)2] =
∑

w(x[i])(x[i] − x̄)2

6.4110 Spring 2025 16

Sampling Importance Resampling (SIR) (Barber 27.6)

• Imagine that we wanted to infer the distribution P(x0:T |y0:T)
Bad idea:
• Sample from some multivariate Gaussian proposal distribution
Q(x0:T) = N(0,Σ) where Σ is T dimensional.

• Weight each sample according to the product of P(xt|xt−1) and P(yt|xt)
• Recover the statistics from the weighted samples.

• If the distance between q and p is large (e.g., Kullback-Leibler
divergence), our weights can grow very small

• We may have a lot of samples, but few of them are particularly
useful

• Idea: importance re-sampling:
1. Sample from Q(x)
2. Compute weights w(x) = P(x)/Q(x)
3. Sample from the discrete distribution of sampled x ∼ w(x).

6.4110 Spring 2025 17

Particle filter

• Use samples as pseudo representation of a distribution
(“non-parametric”)

• Constant time per update step
• Weight of samples drops exponentially over time (because

they are being generated without dependence on the
observations)

• Instead, throw away samples with low weight and
generate new ones as we go.

6.4110 Spring 2025 18

Filtering using Sampling: Sequential Importance Resampling

• Recall during filtering, the distribution we want is P(xt|y0:t) for each t
• If T = 1, then we have a 3-node Bayes net:

1
y

x
0

x
1

• We can get samples over the two latent variables x0:1, assuming we have a
prior over x0.

1. Sample a value of x0 according to its prior
2. Sample a value of x1 according to the sampled value of x0 and the noisy

dynamics model
3. Store combined sampled values x0 and x1 as a single “particle”
4. Repeat until happy

• Two problems: what do we do about P(y1|x1), and how do we marginalize
out x0?

6.4110 Spring 2025 19

Particle Filtering (Barber 27.6)

• Sampling from P(y1|x1) doesn’t help — we have y1.
• We need to sample from P(x1, x0|y1)
• Bayes rule to the rescue!

This is our target:

P(x0, x1|y1) = αP(y1|x1)P(x1, x0) (Where did x0 go in the first term?)

What if this was our proposal?

Q(x0, x1) = P(x0, x1)

P(x0, x1|y1)

Q(x0, x1)
= α

P(y1|x1)P(x0, x1)

P(x0, x1)

⇒ w(x0, x1) = αP(y1|x1)

• What do we do about x0? How do we marginalize it out?
• We can marginalize out x0 by resampling p(x0, x1) according to the weights,

and then dropping x0.

6.4110 Spring 2025 20

Particle Filtering
• If we move to k = 2, we have a 5 node Bayes net

1

x
0

y

x
2

2
y

x
1

• We could just run the whole process from x0, but recall that xT ⊥⊥ x0:T−2, y0:T−1|xT−1.
• This independence means that if we have a distribution over xT−1|y0:T−1, we can

discard the history x0:T−2, y0:T−1 from the particle.
• Therefore, for each new time step, we run the algorithm one step from xT−1 to get

samples over xT , weight by the new observation yT and resample.
• This gives us the following algorithm:

Particle-Filter(x[i]T−1, yT)

for i from 1 to n
Sample x[i]T ∼ P(xT |x

[i]
T−1)

Compute w[i] = P(yT |x
[i]
T−1, x[i]T)

Generate x[1...n]
T samples from {x[i]T−1, x[i]T ,w[i]} ∼ w

return x[1...n]
T

6.4110 Spring 2025 21

Particle filtering

6.4110 Spring 2025 22

Particle filtering – some implementation issues

• You may not want to resample from the weighted particles
on every step
• Resampling may cause important but currently

low-probability particles to be lost.
• One option is to resample only after a certain amount of

time when some of the particle weights are consistently
very low.

• Need to be careful only to incorporate observations when
the dynamics make the observations independent
• Do not let the particle filter incorporate observations from

the same location.
• This will lead to convergence to a point estimate

6.4110 Spring 2025 23

Particle filtering – some implementation issues

• Another problem can be accidental particle death, when all
the particles are too similar and have very low weight.

• If the measurement likelihood is strongly peaked, only a
few particles may have a likely importance weight — these
particles will get resampled often, leading to a pool of
samples with low diversity ⇒ coarsely sampled
approximation to the posterior

• To create some particle diversity, after resampling step,
may want to add an additional perturbation by sampling a
small noise term to be added to the samples.

• May also want to mix in particles from a distribution other
than the prior
• Sample from uniform over the state space : akin to fictitious

noise in the Kalman filter: prevents the estimator from
becoming too sure due to unmodelled approximations

• Sample some particles from measurement model, compute
importance weights from the dynamics. “Hybrid MCL”
(Thrun et al, 2001).

6.4110 Spring 2025 24

Particle Filtering – Complexity

• There are few useful bounds for sampling techniques, and
there is no formal bound on the number of particles
required to get good performance

• When there are many local minima in the posterior
distribution, need to make sure that you have enough
particles
• Hard to do in general
• Can use KLD sampling to determine online when more

samples are needed [Fox, 2003]

• A “simulated annealing” approach can be used, where the
measurements are assumed much noisier than in truth,
and the assumed noise is gradually reduced as the
distribution converges to a consistent estimate

• Often used for global estimation of the position with no
prior knowledge, before “tracking” can begin

6.4110 Spring 2025 25

So many other important ideas!

• Rao-Blackwellization: particles over some variables, and
continuous distributions inside the particles over others.

• Dynamic Bayesian networks: factor states within a time
step, and express transitions as a more general Bayes net.

6.4110 Spring 2025 26

