
L07 – Discrete Hidden Markov Models

AIMA 14.1–14.3; Barber 23.2
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What you should know after this lecture

• What a hidden Markov model is and what it is good for
• What a recursive “filter” is, in this context
• How to solve inference problems in an HMM using

sum-product and max-product
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Aggregating information over time

• If the world is static, and you get different pieces of
evidence over time, you can simply aggregate them via
conditioning.

• But what if the world state could be changing over time?

Note that it doesn’t matter what order the information arrives
in!
Let u(b,o) be a function that takes a belief b = p(S) and an
observation o, and returns a new belief b = p(S|o). Prove that
u(u(b,o1),o2) = u(u(b,o2),o1).
Don’t peek at next slide until you’ve done this!
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Belief update when state does not change

Prove that u(u(b,o1),o2) = u(u(b,o2),o1).

u(b,o1)(s) =
p(o1 | s)b(s)∑
s ′ p(o1 | s ′)b(s ′)

u(u(b,o1),o2)(s) =
p(o2 | s)u(b,o1)(s)∑
s ′′ p(o2 | s ′′)u(b,o1)(s ′′)

=
p(o2 | s)p(o1 | s)b(s)∑

s ′ p(o1 | s ′)b(s ′)
∑
s ′′ p(o2 | s ′′)u(b,o1)(s ′′)

=
p(o2 | s)p(o1 | s)b(s)∑

s ′ p(o1 | s ′)b(s ′)
∑
s ′′ p(o2|s ′′)p(o1|s ′′)b(s ′′)∑

s ′′′ p(o1|s ′′′)b(s ′′′)

=
p(o2 | s)p(o1 | s)b(s)∑

s ′′ p(o2 | s ′′)p(o1 | s ′′)b(s ′′)

This is clearly the same as u(u(b,o2),o1).
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Robot Localization
• Robot initially has no idea where it is.

• Robot has a door detector. Intuitively (to us!) this gives the robot three
possible locations it might be at.

(Figure due to Thrun, Burgard and Fox, 2003, Probabilistic Robotics.)

• Concerns:
• How do we represent those three locations? Is it really only three locations

the robot can be at?
• What happens when the robot moves?
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Robot Localization

• Let’s say the state at each time t is st, where st is a
random variable over the domain of locations (e.g.,
discrete locations in the hallway).

• Let’s say the observations at each time step are ot over
the domain of {Door, No-Door}

• We need some way of linking the states at time st and
st+1 and the states to the observations. Our door detector
might sometimes fail, and it’ll fail in proportion to how
close (or far) we are from the door. Also, when we try and
move from state st to st+1, sometimes we’ll stop short,
sometimes we’ll overshoot.

• Let’s represent st and ot as random variables, and assume
that we know P(st+1|st), P(ot|st) and a prior P(s0).
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Resulting Graphical Model
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Hidden Markov Models

• Idea first due to Baum (1966), used throughout
communications field, summarized by Rabiner (1989)

• Defined by a model λ consisting of a tuple
λ = (S,O,A,B,π) that describe a discrete dynamical
system as follows:
• S is the set of hidden discrete states S = {s(1), s(2), . . . , s(n)}
• O is the set of discrete observations
O = {o(1),o(2), . . . ,o(m)}

• A = {Aij} is the dynamics or “transition” model,
Aij = P(St = s(j) | St−1 = s(i))

• B = {Bik} is the measurement or “sensor” model,
Bik = P(Ot = o(k) | St = s(i))

• π is the initial state distribution

Barber uses h for states, v for observations. AIMA uses X for states, e for
observations, and never uses a specific symbol for the transition or
observation models. We are using s for states and o for observations to be
consistent with the MDP and POMDP lectures coming up.
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Dependencies in Hidden Markov Models

• Note that A, B and π are potentials of the form φ(·) that we
saw in last lecture.

• HMM defined by:
• S0:t−1 ⊥⊥ St+1:T | St
• Ot ⊥⊥ (S0:t−1,St+1:T ) | St
• We have conditional distributions P(Ot|St) and P(St+1|St)
• First assumption known as the “Markov” assumption.
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Three Questions

Three questions we might ask:
• Given the observation sequence o0:T = {o0,o1, . . . ,oT },

how do we efficiently compute P(ST |o0:T ), the probability
of the observation sequence given the model?

• Given the observation sequence o0:T = {o0,o1, . . . ,oT },
how do we efficiently compute P(o0:T ), the probability of
the observation sequence given the model?

• Given the observation sequence o0:T = {o0,o1, . . . ,oT },
how do we find a corresponding state sequence
s∗0:T = {s∗0, s∗1, . . . , s∗T } which is optimal in some
meaningful sense (i.e., best “explains” the observations)?

Rabiner did not include our first question, but did include an important additional

question about how to estimateA and B from data.
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Filtering with Bayes Filter (Forward Algorithm)
Compute P(sT | o0:T )

• Use sum-product, with ST as the root of the tree.
• Conditioning on evidence o0, . . . ,oT effectively selects out

a specific column of B for each time step.
Table multiplication and summing form:

P(S0 | o0) ∝ µS0→A01 = π · Bo0

P(St | o0:t) ∝ µSt→At,t+1 =
∑
St−1

µSt−1→At−1,t ·A · Bot

Matrix multiply form, where ⊗ is elementwise multiply and
concatenation is matrix multiply:

P(S0 | o0) = α0 ∝ π⊗ Bo0

P(St | o0:t) = αt ∝ (αt−1A)⊗ Bot
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Smoothing

More generally, compute, for all t, P(st | o0:T )
Forward-Backward algorithm = sum-product
• Do forward pass, computing α from left
• Do backward pass, computing β from the right

βt = µAt,t+1→St ∝ P(St | ot+1:T )

=
∑
St+1

A · Bot+1 · µAt+1,t+2→St+1

=
∑
St+1

A · Bot+1 · βt+1

βT = 1

• P(St | o0:T ) ∝ αtβt
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Likelihood of observation sequence
The values αT are equivalent to P(o0:T ,ST ), so

P(o0:T ) =
∑
s

P(o0:T ,ST = s) =
∑
s

αT [s]

Derivation:

P(o0:T ) =
∑
s0:T

P(o0:T | s0:T )P(s0:T )

=
∑
s0:T

 T∏
t=0

P(ot | st)

P(s0:T )

=
∑
s0:T

 T∏
t=2

P(ot | st)

P(s2:T | s1)

(
P(s1 | s0)P(o1 | s1)

)
P(o0 | s0)P(s0)


=

∑
s0:T

BsT ,oT ·AsT−1,sT . . .Bs1,o1 ·As0,s1 ·Bs0,o0 ·π(s0)

= BsT ,oT ·
∑
sT

AsT−1,sT . . .Bs1,o1 ·
∑
s0©
↓

Marginalizing out s0

As0,s1 ·Bs0,o0 ·π(s0)︸                 ︷︷                 ︸
α0

︸                                                     ︷︷                                                     ︸
α1

⇒ αt+1 =

 |S|∑
j=0

αtAi,j

 ·Bi,ot+1
And P(o0:T ) =

∑
αT
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Maximum likelihood state sequence
Compute s∗0:T = argmaxs0:T

P(s0:T | o0:T ) using max-product
algorithm!
• Forward pass to compute

δt = max
s0:t

P(s0:t | o0:t) = max
St−1

A · δt−1 · Bot

• Remember best st−1 for each s

ψt(s) = argmax
St−1

A · δt−1 · Bot

• Backtrace:

s∗T = argmax
ST

δT

s∗t = ψt+1(s
∗
t+1)
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Viterbi Decoding Example (from AIMA)

One step of Viterbi decoding would be: If we set the P(Rt = T |Rt−1 = T) = 1 and
P(Rt = F|Rt−1 = F) = 1, we get a slightly different
graph:

• On the right, it might be the case that the Rt = F really is the most likely state. How might this happen?
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Next time

• Kalman filtering
• Particle filtering
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