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1 Max-Product Algorithm (with argmax tracking)

Let’s study the max-product algorithm on an example problem:

A f1

f2

B f3

The factor tables are:

A f1(A)
1 5
0 10

B f3(B)
1 10
0 1

A B f2(A,B)
1 1 1
1 0 50
0 1 2
0 0 10

If we were to attempt to find the most-likely assignment to variables A and B simply by eyeballing
these factor tables, we might pick A = 0 and B = 1 because those maximize the unary factors f1
and f3 connected to variables A and B respectively.

However, this naive eyeballing doesn’t account for factor f2. Let’s walk through message passing
for max product to see how to do this properly, and how the answer differs from our initial eyeballing.

1.1 Step 1: Compute Messages from Leaf Nodes

1.1.1 Compute Message from f1 to A

Since f1(A) is a unary factor:

µf1→A(A) = f1(A)

Thus, the messages are:

A µf1→A(A)
1 5
0 10
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1.1.2 Compute Message from f3 to B

Since f3(B) is a unary factor:

µf3→B(B) = f3(B)

Thus, the messages are:

B µf3→B(B)
1 10
0 1

1.2 Step 2: Compute Message from Intermediate Node

1.2.1 Compute Message from B to f2

Since B receives a message from f3, it simply passes it along:

µB→f2(B) = µf3→B(B)

Thus, the messages are:

B µB→f2(B)
1 10
0 1

1.3 Step 3: Compute Message from f2 to A (Tracking argmax)

The max-product update rule is:

µf2→A(A) = max
B

f2(A,B) · µB→f2(B)

Multiplying by the message from B:

A B f2(A,B) · µB→f2(B)
1 1 1× 10 = 10
1 0 50× 1 = 50
0 1 2× 10 = 20
0 0 10× 1 = 10

Maximizing over B:

µf2→A(A = 1) = max(10, 50) = 50, argmax
B

= 0

µf2→A(A = 0) = max(20, 10) = 20, argmax
B

= 1

Thus, the messages are:

A µf2→A(A)
1 50
0 20

Tracking argmax:
- If A = 1, the best B is 0. - If A = 0, the best B is 1.

1.4 Step 4: Compute Final Message at A

µA(A) = µf1→A(A) · µf2→A(A)

A µf1→A(A) µf2→A(A) µA(A)
1 5 50 5× 50 = 250
0 10 20 10× 20 = 200

Since 250 > 200, we choose:

A = 1
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1.5 Step 5: Compute B Using Tracked argmax

From Step 3, we tracked:
- If A = 1, the best B was 0. - If A = 0, the best B was 1.
Since we now know A = 1, we select:

B = 0

1.6 Final Answer

A = 1, B = 0

Note that this is different than the answer we obtained by eyeballing the factors in the beginning
(i.e. A = 0, B = 1). Intuitively, this should make sense by looking at factor f2: it provides
A = 1, B = 0 a much higher score than A = 0, B = 1.

2 All About Sampling

In lecture, we discussed the conceptual differences between rejection sampling and importance sam-
pling. Let’s study a concrete example to shed more light on these methods, as well as the main
differences between them.

Consider the below example Bayes net:

Cloudy (C) Rain (R)

Sprinkler (S) Wet Grass (W )

The (conditional) probability tables for this network are as follows. Our goal will be to use
sampling within this Bayes Net to estimate Our goal is to estimate P (C = 1 | W = 1).

Cloudy (C) P(C)
1 0.5
0 0.5

Table 1: Probability Distribution of Cloudy

Rain (R) C = 0 C = 1
P (R = 1 | C) 0.2 0.8
P (R = 0 | C) 0.8 0.2

Table 2: Conditional Probability of Rain given Cloudy

2.1 Rejection Sampling

Let’s try to solve this with rejection sampling. Recall that to perform this, we’ll need to first perform
ancestral sampling on the bayes net above to derive samples.
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Sprinkler (S) C = 0 C = 1
P (S = 1 | C) 0.5 0.1
P (S = 0 | C) 0.5 0.9

Table 3: Conditional Probability of Sprinkler given Cloudy

Wet Grass (W) R = 0, S = 0 R = 0, S = 1
R = 1, S = 0 R = 1, S = 1

P (W = 1 | R,S) 0.1 0.9
0.9 0.99

Table 4: Conditional Probability of Wet Grass given Rain and Sprinkler

2.1.1 Step 1: Generating Samples Using Ancestral Sampling

Ancestral sampling essentially involves ‘walking down’ the bayes net and generating values for each of
the variables in turn. In this case, we’d start with variable C. We sample according to the probability
distribution P (C) (which is uniform, and is thus equivalent to flipping a fair coin) and obtain 1 for
instance. Given this, we sample R via P (R|C = 1) : P (R = 1|C = 1) = 0.8, P (R = 0|C = 1) = 0.2,
let’s say this gives us 1 as well. We move on to sampling S and ultimately W in a similar manner.
Let’s say we draw 8 samples in this fashion, illustrated in the table below.

Sample C R S Sampled W Keep Sample?

1 1 1 1 1 Yes
2 0 1 0 1 Yes
3 1 0 1 1 Yes
4 0 0 1 1 Yes
5 1 1 0 1 Yes
6 0 0 0 0 No
7 1 0 0 0 No
8 0 0 0 0 No

Table 5: Generated Samples Using Ancestral Sampling

From these samples, we throw out any samples where W = 0 because we are ultimately interested
in P (C = 1 | W = 1).

2.1.2 Step 2: Estimating Posterior P (C|W = 1)

Using only the accepted samples:

• Accepted samples: {1, 2, 3, 4, 5}

• Number of samples where C = 1: 3

• Total accepted samples: 5

Thus, the rejection sampling estimate is:

P (C = 1|W = 1) ≈ 3

5
= 0.6 (1)

2.2 Importance Sampling

Now, let’s study how importance sampling would work on the same problem.
We are interested in getting P (C = 1 | W = 1). Our evidence here (denoted in lecture notes

by E) is W = 1. Recall from lecture that importance sampling draws N samples x1, x2, . . . , xN

and computes an importance weight wi for each sample xi. The importance weight formula is
ΠjP (ej |parents(Ej)). Here j refers to each variable used as part of evidence. Since there is only one
variable here, our importance weight formula is just P (W = 1|parents(W )) for every sample xi.

So specifically, we will use ancestral sampling — just as we did in rejection sampling — to
sample values for variables C,R, S. We will then look at our probability table P (W |R,S) to get
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P (W = 1|R,S) and use this to get the importance weight. Finally, we will normalize these weights
into a probability distribution.

Let’s say we draw the exact same 8 samples as above in rejection sampling. The importance
weights are computed in the table below:

Sample C R S wi = P (W |R,S)

1 1 1 1 0.99
2 0 1 0 0.9
3 1 0 1 0.9
4 0 0 1 0.9
5 1 1 0 0.9
6 0 0 0 0.1
7 1 0 0 0.1
8 0 0 0 0.1

Table 6: Generated Samples Using Ancestral Sampling along with importance weights.

Given these weights, we can compute our approximation for P (C = 1|W = 1) by picking out the
weights where W = 1 and C = 1 and dividing through by the sum of all weights.

P (C = 1|W = 1) ≈ 0.99+0.9+0.9+0.1
0.99+0.9+0.9+0.9+0.9+0.1+0.1+0.1 = 0.591.

Notice here that even the samples where W = 0 influenced the final value. That’s the power
of importance sampling; we’re able to get a better estimate of the probability we care about (by
leveraging knowledge of the conditional probability tables from the bayes net) using the same amount
of samples used by rejection sampling.
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