
L06 – Approximate Inference via Sampling

AIMA 13.4
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What you should know after this lecture
• Ancestral sampling in directed models
• Gibbs sampling in Bayes nets and factor graphs
• Intro to more general MCMC methods
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Probabilistic belief representation

• Belief is a probability distribution :
B ∈ P(S)
(an element of the set of all
distributions over S)

• Important questions:
• What is pB(event)?
• What is the most likely state

argmaxs pB(s)?
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Approximate inference

What if your network is highly connected? Exact inference is
expensive.
Approximations exist!

• In a loopy factor graph, perform multiple rounds of
message passing

• Not guaranteed to converge
• If Gaussian loopy BP converges, the means will be correct;

under some conditions, the covariances will be, as well.
• Otherwise, not too much we can say.

• Sampling methods try to draw samples from P(X1, . . . ,Xn)
and compute answers to queries from them. Generally
they are consistent: estimates converge in the limit to the
true answers, but can take a long time
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Sampling in Bayes nets

Easy to do ancestral sampling to get samples of any
unconditional marginal or joint v̄ ∼ Pα(V̄) when α is a BN

1. Sort nodes in α into topological order so that all nodes
pa(V) come before V in the ordering.

2. For i = 1 to M `// number of samples
• For j = 1 to N `// number of nodes in network

xij = sample(Pα(Vj | pa(Vj) = xij[pa(Vj)])))

3. Use {xi}i=1..M to estimate whatever you want, e.g.

P̂α(Vk = 1,Vj = 0) =
1
M
I(xik = 1 ∧ xij = 0)

where I(a) = 1 if a else 0
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Conditional sampling

What if we want Pα(V | E = e)? Two general approaches:
• Rejection sampling: do ancestral sampling, but throw

away all examples in which E , e.
• Can be very slow if P(E = e) is small.

• Importance sampling: sample from an easier distribution
Q, but reweight the samples to compute your result

• Let Q be a distribution over same domain as desired
distribution P and {xi}1,...,M ∼ Q(x)

• Then,

Ex∼P[f(x)] ≈
1
Z

∑
xi∼Q

P(xi)

Q(xi)
f(xi)

• Necessary that Q(x) > 0 for any x where P(x) > 0.
• Have to be able to evaluate P(x) and Q(x)
• If P and Q are very different, you will need large M to get a

good estimate.
6.4110 Spring 2025 6



Bayes net importance sampling

In Bayes nets, let Z = V \ E (the unobserved nodes)
• Fix all E = e and then use ancestral sampling to get

samples from

Q(Z) =
∏
i

P(Zi | pa(Zi))

• Importance weights

P(z | e)

Q(z)
∝ P(z, e)

Q(z)
=

∏
i P(zi | pa(Zi))

∏
j P(ej | pa(Ej))∏

i P(zi | pa(Zi)

=
∏
j

P(ej | pa(Ej))

The name importance sampling also used in a context of sampling from continuous

distributions for a different method.
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Markov chains
• set S of states; St is a random variable representing the

state at time t; si ∈ S is a possible state
• initial state distribution p(S0) = π0 (row vector)
• transition distribution P(St = sj | St−1 = si) = Pij

We can ask questions like:
• If S0 ∼ π0, what is the distribution on S1?

Ans: π0P (check dimensions! be sure it makes sense!)
• What’s the probability it will hit s9 before it hits s3?
• What is the limiting behavior?

• Could absorb into a single state and never escape
• Could enter a deterministic cycle
• Could have a stationary distribution: π = limt→∞ Pt with

the property that πP = π independent of π0
Guaranteed if no 0’s in P (read about ergodicity)

• Fun facts: π is an eigenvector of P and the second largest
eigenvalue governs the convergence rate
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Gibbs sampling

Can be applied in Bayes nets but easiest to think of in factor
graphs. Simple type of Markov chain Monte Carlo (MCMC).

• Define a Markov chain where
• States are assignments of values to all variables
• The stationary distribution of the chain is the desired

distribution P(V1, . . . ,Vn)
• Samples will be identically distributed but not necessarily

independent (because temporally correlated)
• To do estimation:

• Run the chain for a while and throw those samples away
(“burn in” phase) so we are in the stationary distribution

• Keep (every kth) sample and use them to estimate the
quantity of interest
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Gibbs sampling in graphical model

1. Initialize values v̄ = (v1, . . . , vN) at random
2. Loop

• Choose i randomly from 1, . . . ,N
• Set vi to a sample from

P(Vi | (V \ Vi) = (v̄ \ vi)) = P(Vi | mb(Vi)) = v̄mb(Vi))

where mb(Vi) is the set of variables in the Markov blanket
of Vi and vmb(Vi)is their values in the current assignment v̄

3. Use the v̄ samples to estimate quantity of interest.
Markov blanket: In a factor graph, it’s the neighboring nodes

P(Vi | mb(Vi) = mb(vi)) =
∏

ϕ∈N(Vi)

ϕ[mb(vi)]

where ϕ[mb(vi)] is the vector of values for variable Vi that remains
after selecting the other dimensions of factor ϕ to have their
associated values in mb(vi).6.4110 Spring 2025 10



Example: one step

Assume a factor graph with binary variables A,B,C,D and
• ϕAB = [[1, 10], [10, 1]]
• ϕAC = [[1, 2], [3, 4]]
• ϕAD = [[5, 2], [1, 1]]

Assume
• the current assignment is (1, 1, 1, 0)
• we pick variable A to update
• we construct a distribution on A by

• Finding all the factors mentioning A
• For each of those factors, use the current assignments B = 1,

C = 1, D = 0 to select out each factor’s opinion about A
• This gives us [10, 1], [2, 4], [5, 1]
• Table multiplication gives us [100, 4]

• with probability 100/104, we change A to have value 0
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Gibbs sampling properties

If there are no 0 entries in the factors then, the chain is ergodic,
which means

• the chain is aperiodic
• every state is reachable with non-zero probability from

every other state
It’s not too hard to prove that the joint distribution encoded by
the network is the stationary distribution of the Markov chain
induced by Gibbs sampling.
Fine in discrete / continuous, loopy graphs.
Read about Metropolis/Hastings (a more general class of
algorithms) in AIMA4e to learn more.
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Next time

• Hidden Markov models
• Start Kalman filters
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