
L05 – Generalized PGMs

(AIMA 13.3.2 or Barber 5.3) and AIMA 13.2.3 (or Koller and
Friedman 7.1–7.2 (really best for Gaussian models))
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What you should know after this lecture
• Conditioning on evidence in factor graph
• Max-product to find maximum-likelihood assignment
• Variable elimination in loopy graphs
• Intro to continuous graphical models
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Inference in factor graphs
Some inference problems:
• Joint distribution: In a factor graph, use table

multiplication to compute a big table

1
Z

∏
k

φk

where Z is the sum of all table entries
• Marginal distribution: P(Y) where Y ⊂ V

• Conditional probability: P(Y | E = e), where Y ⊂ V, E ⊂ V,
and Y ∩ E = ∅; and e is the observed values of the variables
in E. Note that it is not necessary that Y ∪ E = V.

• Most probable assignment (MAP):

argmaxyP(Y = y | E = e) .

Note that the MAP of a set of variables is not necessarily
the set of MAPs of the individual variables.6.4110 Spring 2025 3



Sum-Product reminder
1. Select Vi as root
2. Recursively compute P(Vi) ∝

∏
φ∈N(Vi)

µφ→Vi
3. Pass messages back down the tree, at each node computing

marginal P(Vj) ∝
∏
φ∈N(Vj)

µφ→Vj

Recall that ∝means “proportional to,” and we generally need to normalize to
get a distribution.6.4110 Spring 2025 4



Handling evidence

To compute P(V | E = e), add a new potential for every variable
Vi ∈ E that assigns 1 to Vi = ei and 0 to all other values for Vi.
Then run sum-product.
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More than marginal!

Easy to compute P(Vi,Vj) if they are connected in the graph via
one factor φ:

P(Vi,Vj) ∝ φ
∏

φi∈N(Vi)\φ

µφi→Vi

∏
φj∈N(Vj)\φ

µφj→Vj

∏
Vk∈N(φ)\{Vi,Vj}

µVk→φ

Multiply everything coming into Vi, Vj, and φ from elsewhere,
and normalize
If they aren’t neighbors, then for each value Vi = vi, compute

P(Vi = vi,Vj = vj) = P(Vi = vi | Vj = vj)P(Vj = vj)

using tools we have already established.
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Finding most probable assignment in a factor graph

We can an algorithm very similar to sum product, called max
product. Just as ab+ ac = a · (b+ c),
max(ab,ac) = a ·max(b, c) for non-negative a.
Do forward pass with messages as for sum-product, but

µφ→V(v) = max
w̄∈N(φ)\V

φ(v, w̄)
∏

W∈N(φ)\V

µW→φ(w)

Keep track of the values ofW that yielded the max for each v:

MV(v) = argmax
w̄∈N(φ)\V

φ(v, w̄)
∏

W∈N(φ)\V

µW→φ(w)
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Decoding to find most probable assignment

Work backward from root V :

v∗ = argmax
v

P(v)

Best value for each childWi of V :

w∗1, . . . ,w∗k =MV(v)
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Handling loopy factor graphs

Exact inference is exponential in the number of variables in the
“tree width” (largest group of variables that has to be
considered jointly)

1. Cutset conditioning: pick a subset of nodes C such that, if
they were removed, the remaining graph would be a tree.
Iterate over assignments to C, do inference, and then
reassemble the answers.

2. Variable elimination: iteratively,
• Pick a variable V (efficiency depends on how you do this)
• Define new φ ′ =

∑
v

∏
φ∈N(V)φ

• Remove V and all φ ∈ N(V) from graph
• Add φ ′ (defined on all neighboring variables)
• Until you have a tree (or one big table!)

3. Junction tree alg : complicated!
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Variable elimination

Assume a factor graph such that

p(a,b, c,d, e) ∝φAB(a,b)φAC(a, c)φBCD(b, c,d)
φDE(d, e)φDF(d, f)

Imagine we want to know p(A).

p(a) ∝
∑

b∈ΩB,c∈ΩC,d∈ΩD,e∈ΩE,f∈Ωf

φAB(a,b)φAC(a, c)φBCD(b, c,d)

φDE(d, e)φDF(d, f)
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Eliminate F
Consider “eliminating” variable F: push the sum over F
followed by all factors involving F to the end

p(a) ∝
∑

b∈ΩB,c∈ΩC,d∈ΩD,e∈ΩE

φAB(a,b)φAC(a, c)φBCD(b, c,d)

φDE(d, e)
∑
f∈Ωf

φDF(d, f)

Find all the other variables U1, . . . ,Uk involved in any factors
mentioning F (in this case it’s just D). Call those factors
φ ′1, . . .φ ′m. Make a new factor φ1 on U1, . . .Uk defined (using
table multiplication) by: φ1 =

∑
f∈Ωfφ

′
1 · . . . · φ ′m

In our case φ1(d) =
∑
f∈ΩfφDF(d, f). Now, we have a new,

equivalent (in terms of its distribution on all the other
variables), factor graph

p(a,b, c,d, e) ∝ φAB(a,b)φAC(a, c)φBCD(b, c,d)φDE(d, e)φ1(d)
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Eliminate E
Now let’s eliminate variable E: push the sum over E followed
by all factors involving E to the end

p(a) ∝
∑

b∈ΩB,c∈ΩC,d∈ΩD

φAB(a,b)φAC(a, c)φBCD(b, c,d)φ1(d)∑
e∈ΩE

φDF(d, e)

Find all the other variables U1, . . . ,Uk involved in any factors
mentioning E (in this case it’s just D). Call those factors
φ ′1, . . .φ ′m. Make a new factor φ2 on U1, . . .Uk defined (using
table multiplication) by: φ2 =

∑
e∈ΩEφ

′
1 · . . . · φ ′m.

In our case φ2(d) =
∑
e∈ΩEφDE(d, e). Now, we have a new,

equivalent (in terms of its distribution on all the other
variables), factor graph

p(a,b, c,d) ∝ φAB(a,b)φAC(a, c)φBCD(b, c,d)φ1(d)φ2(d)
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Eliminate D
Now let’s eliminate variable D: push the sum over D followed
by all factors involving D to the end

p(a) ∝
∑

b∈ΩB,c∈ΩC

φAB(a,b)φAC(a, c)

∑
d∈ΩD

φBCD(b, c,d)φ1(d)φ2(d)

Find all the other variables U1, . . . ,Uk involved in any factors
mentioning D (in this case it’s B,C). Call those factors
φ ′1, . . .φ ′m. Make a new factor φ3 =

∑
d∈ΩDφ

′
1 · . . .φ ′m

In our case φ3(b, c) =
∑
d∈ΩDφBCD(b, c,d)φ1(d)φ2(d). Now,

we have a new, equivalent (in terms of its distribution on all the
other variables), factor graph

p(a,b, c) ∝ φAB(a,b)φAC(a, c)φ3(b, c)
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Eliminate C
Now let’s eliminate variable C: push the sum over C followed
by all factors involving C to the end

p(a) ∝
∑

b∈ΩB,c∈ΩC

φAB(a,b)
∑
c∈ΩC

φAC(a, c)φ3(b, c)

Find all the other variables U1, . . . ,Uk involved in any factors
mentioning C (in this case it’s A,B). Call those factors
φ ′1, . . .φ ′m. Make a new factor φ4 on U1, . . .Uk defined (using
table multiplication) by:

φ4 =
∑
c∈ΩC

φ ′1 · . . . · φ ′m

In our case φ4(a,b) =
∑
c∈ΩCφAC(a, c)φ3(b, c). Now, we

have a new, equivalent (in terms of its distribution on all the
other variables), factor graph

p(a,b) ∝ φAB(a,b)φ4(a,b)
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Eliminate B

Now let’s eliminate variable B: push the sum over B followed
by all factors involving B to the end

p(a) ∝
∑
b∈ΩB

φAB(a,b)φ4(a,b)

Compute φ5(a) =
∑
b∈ΩB φAB(a,b)φ4(a,b). Now, we have a

new, equivalent (in terms of its distribution on all the other
variables), factor graph

p(a) ∝ φ5(a)

Yay!
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Facts about variable elimination

• Computational complexity is exponential in the number of
variables in the biggest factor you have to compute along
the way

• This depends on variable order! What if we choose to
eliminate D first in this problem?

• It’s NP-hard to find the optimal variable order.
• Still, there are heuristics that can make this a good strategy.
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Conjugate families of probability distributions

In order for exact probabilistic inference to be tractable, we
generally need for the joint and conditional distributions of
factors to be conjugate:1

• Let f(θA)(a) be the pdf of a random variable A and
f(θB)(b) be the pdf of a random variable B, where f has
some fixed parametric form and θ specifies a particular pdf
in that family.

• Then the product of the pdfs on A and B has the form
f(θAB)(a,b) where θAB is a function of θA and θB.

f(θA)(a) · f(θB)(b) = f(θAB)(a,b) = f(g(θa, θb))(a,b)

1The actual definition is more general and specifically relates a prior
distribution and an observation distribution, but this basic idea is what we
need for now.6.4110 Spring 2025 17



Categorical distribution is conjugate family

We have been using the categorical distribution2

• Ω = {x1, . . . , xM}

• θA = (θA1 , . . . , θAM) θB = (θB1 , . . . , θBM)

• fA(θ
A)(xi) = θ

A
i fB(θ

B)(xi) = θ
B
i

If we multiply these functions on the same variable (e.g. during
message passing), then we get
• fAB(θAB)(xi) = θ

AB
i = 1

Zθ
A
i · θBi

where Z =
∑M
i=1 θ

A
i θ
B
i

2We like the name “multinoulli” better, though!6.4110 Spring 2025 18



Categorical distribution is conjugate for joint

Combining two categorical distributions on different variables:
• ΩA = {a1, . . . ,aM} ΩB = {b1, . . . ,bN}
• θA = (θA1 , . . . , θAM) θB = (θB1 , . . . , θBN)
• fA(θ

A)(ai) = θ
A
i fB(θ

B)(bi) = θ
B
i

If we multiply these functions on different variables (e.g.
computing the joint when A and B are independent), then we
get
• ΩAB = ΩA ×ΩB
• fAB(θ

AB)(ai,bj) = θAB(ai,bj) = θAi · θBj
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Univariate Gaussian is conjugate family

• Ω = R

• θA = (µA,σ2
A) θB = (µB,σ2

B)

• fA(θA)(x) =
1√

2πσA
exp {− 1

2σ2
A

(x− µA)
2}

• fB(θB)(x) =
1√

2πσB
exp {− 1

2σ2
B

(x− µB)
2}

If we multiply these functions on the same variable (e.g. during
Bayes rule), then
• Observe that multiplying f’s yields

fAB(θAB)(x) =
1√

2πσA

1√
2πσB

exp {−
1

2σ2
A

(x−µA)
2 −

1
2σ2
B

(x−µB)
2}

• After completing the square and some algebra, we find that
fAB(θAB)(x) = 1√

2πσAB
exp {− 1

2σ2
AB

(x−µAB)
2} where

µAB =
µAσ

2
B +µBσ

2
A

σ2
A +σ2

B

σ2
AB =

σ2
Aσ

2
B

σ2
A +σ2

B
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Multivariate Gaussian

• Ω = RD

• θ = (µ ∈ RD,Σ ∈ RD×D) `// Σ is positive definite

f(µ,Σ)(x) =
1√

2πD|Σ|
exp {−

1
2
(x− µ)TΣ−1(x− µ)}

|Σ| is the determinant; figure from Wikipedia

• Axes are eigenvectors of
Σ

• Axis-aligned if Σ is
diagonal

• Round if Σ is identity
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Fun facts about the multivariate Gaussian
Let’s say our MVG has dimensions 1..D, but we are interested in marginalizing some

of them out, or conditioning some of them on particular values. Let’s divide them into

one set of dimensionsA = 1..K and another B = K+ 1..D. So, we can think of the

parameters as

µ =

(
µA
µB

)
Σ =

(
ΣAA ΣAB
ΣBA ΣBB

)
Marginalizing out dimensions A yields Gaussian on Bwith

µmB = µB ΣmB = ΣBB

Conditioning on B = b yields a Gaussian on A with

µcA|B = µA + ΣABΣ
−1
BB(b− µB) ΣcA|B = ΣAA − ΣABΣ

−1
BBΣBA

For random variables X1, . . . ,Xn that are jointly Gaussian with
parameters µ,Σ:
• The mean of c0 +

∑
i ciXi, where the ci are constants, is

c0 +
∑
i ciµi

• The variance of c0 +
∑
i ciXi is cTΣc6.4110 Spring 2025 22



Multivariate Gaussian is conjugate family

Product of MVGs:

• ΩA = RD ΩB = RD

• θA = (µA,ΣA) θB = (µB,ΣB)

If we multiply these functions on the same variable (e.g. during
Bayes rule), then we get an MVG with

µAB =
(
Σ−1
A + Σ−1

B

)−1 (
Σ−1
A µA + Σ−1

B µB
)

ΣAB =
(
Σ−1
A + Σ−1

B

)−1

Can be useful to define precision : Λ = Σ−1

Then ΛAB = ΛA +ΛB and

µAB = (ΛA +ΛB)
−1(ΛAµA +ΛBµb)
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Multivariate Gaussian is conjugate for joint

Product of MVGs on different domains

• ΩA = RDA ΩB = RDB

• θA = (µA,ΣA) θB = (µB,ΣB)

We get an MVG with dimension D = DA +DB, and

µ =

(
µA
µB

)
Σ =

(
ΣA 0
0 ΣB

)
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Gaussian Bayesian networks

Assume the conditional probability distribution for each node
V has the form V ∼ Normal(w0

V +wTV · pa(V),η2
V) where

• wv is a vector of real-valued weights of length N− 1
(number of parents of V) and w0 is a scalar offset

• η2
V is the variance of added noise at this node

then the joint distribution over all variables V1, . . . ,VN,V is
Gaussian.
• Assume the parents of node V are normally distributed

with mean µP,ΣP the distribution over V is normal with
• µV = w0

V +WT
VµP

• σ2
V = η2

V +wTΣPw
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Gaussian Bayesian networks

• Assume distribution V ∼ Normal(w0
V +wTV · pa(V),η2

V)

• Assume the parents of V are normally distributed with
mean µP,ΣP

then the joint distribution over all variables V1, . . . ,VN,V is
Gaussian with
• Mean: µP,µV
• Cov: [

ΣP ΣPV
ΣTPV σ2

V

]
where ΣPV [i] =

∑
j ΣP[i, j]

By induction, you can show that a whole Bayes net with this
linear Gaussian structure defines a joint Gaussian distribution!
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Hybrid networks

Some standard cases:
• Discrete parent of Gaussian nodes: mixture-of-Gaussians

models
• Continuous parent of discrete node: apply sigmoid or

softmax to get categorical distribution
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Gaussian Factor graphs

Make a factor graph in which all potentials are described using
µ,Σ over their neighbor variables.
• Joint distribution (suitably normalized) is a multivariate

Gaussian
• If the graph is a tree, you can do belief propgation, using

exactly the same algorithmic structure as sum-product, but
using operations on Gaussian-PDF-form functions:
• Multiply
• Marginalize

• It turns out that it’s usually easier to do it with messages
representing the same information as µ,Σ but in a different
(“canonical”) form. We’re not going to look at it in detail.
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Next time

• Approximate inference via sampling
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