LO05 — Generalized PGMs

(AIMA 13.3.2 or Barber 5.3) and AIMA 13.2.3 (or Koller and
Friedman 7.1-7.2 (really best for Gaussian models))
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What you should know after this lecture

¢ Conditioning on evidence in factor graph
e Max-product to find maximume-likelihood assignment
e Variable elimination in loopy graphs

Intro to continuous graphical models
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Inference in factor graphs

Some inference problems:

e Joint distribution: In a factor graph, use table
multiplication to compute a big table

12 H br
k
where Z is the sum of all table entries
e Marginal distribution: P(Y) where Y C V
e Conditional probability: P(Y |E =e), whereY CV,ECV,
and YN E = 0; and e is the observed values of the variables

in E. Note that it is not necessary that YUE = V.
e Most probable assignment (MAP):

argmaxyP(Y=y|E=e) .

Note that the MAP of a set of variables is not necessarily
sanostheset of MAPs of the individual variables. ;



Sum-Product reminder

1. Select V; as root

2. Recursively compute P(Vi) oc [ [env,) Ho—Vv

3. Pass messages back down the tree, at each node computing
marginal P(Vj) o< [[yenv v;) MoV,

Recall that oc means “proportional to,” and we generally need to normalize to

et pschistsipution. s



Handling evidence

To compute P(V | E = e), add a new potential for every variable
V; € E that assigns 1 to V; = e; and 0 to all other values for V;.
Then run sum-product.
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More than marginal!

Easy to compute P(V;, V;) if they are connected in the graph via
one factor ¢:

P(Vi,Vj) oxX d) H Ko —vy H u¢j*>Vj H Hvi—¢

GLEN(Vi)\d d;EN(V; )\ Vi EN(P)\{Vy,V;}

Multiply everything coming into Vj, Vj, and ¢ from elsewhere,
and normalize
If they aren’t neighbors, then for each value V; = v;, compute

P(Vi :Vi,v]' :Vj) =P(V; =v; | V] :V])P(V) :Vj)

using tools we have already established.
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Finding most probable assignment in a factor graph

We can an algorithm very similar to sum product, called max
product. Justas ab+ac=a- (b +c),

max(ab, ac) = a - max(b, c¢) for non-negative a.

Do forward pass with messages as for sum-product, but

po—v(V) = max  o(v,Ww) IT ewooew
WEN{®N WeN(p)\V

Keep track of the values of W that yielded the max for each v:

My (v) = argmax ¢(v,w) H Hw s (W)
weN(p)\V WEN($)\V
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Decoding to find most probable assignment

Work backward from root V:

v* =argmaxP(v)
v

Best value for each child W; of V:

Wi, ..., wg = My(v)
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Handling loopy factor graphs

Exact inference is exponential in the number of variables in the
“tree width” (largest group of variables that has to be
considered jointly)

1. Cutset conditioning: pick a subset of nodes C such that, if
they were removed, the remaining graph would be a tree.
Iterate over assignments to C, do inference, and then
reassemble the answers.

2. Variable elimination: iteratively,

e Pick a variable V (efficiency depends on how you do this)
e Definenew ¢' =3 | [[peniv) @

e Remove V and all $ € N(V) from graph

e Add ¢’ (defined on all neighboring variables)

¢ Until you have a tree (or one big table!)

3. Junction tree alg : complicated!
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Variable elimination

Assume a factor graph such that

p(a! b! c, d! e) OCq)AB(as b)chC(as C)q)BCD(b! C, d)
$pe(d, e)ppr(d,f)

Imagine we want to know p(A).

pla) > $as(a,b)dpacla,c)dpcn(b,c,d)

beQg,ceQc,deQp,ecQE,feEQy
¢pe(d,e)dppr(d,f)
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Eliminate F

Consider “eliminating” variable F: push the sum over F
followed by all factors involving F to the end

pla) x > das(a,b)bac(a,c)dpscn(b, c,d)

beDg,ceQc,deQp,ecQ¢

¢pe(d,e) Z ¢pr(d,f)

feQy

Find all the other variables Uy, ..., Uy involved in any factors
mentioning F (in this case it’s just D). Call those factors

$1,... b1, Make a new factor ¢1 on Uy, ... Uy defined (using
table multiplication) by: &1 =) (cqed]--..- b1y

In our case ¢1(d) =} ;e PpF(d, ). Now, we have a new,
equivalent (in terms of its distribution on all the other
variables), factor graph

p(aibs C, d’ e) X d)AB(aib)d)AC(a’ C)d)BCD (bl C, d)d)DE(d5 e)¢1 (d)
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Eliminate E

Now let’s eliminate variable E: push the sum over E followed
by all factors involving E to the end

pla) o > das(a,b)bac(a,c)dpscn(b, e, d)dq(d)

beQp,ceQc,deQp

> doelde)

ecQrg

Find all the other variables Uy, ..., Uy involved in any factors
mentioning E (in this case it’s just D). Call those factors
$1,... b1, Make a new factor ¢ on Uy, ... Uy defined (using
table multiplication) by: d2 = ) .o $1 .. - Py

In our case ¢p2(d) =} .cor ¢Ppeld, e). Now, we have a new,
equivalent (in terms of its distribution on all the other
variables), factor graph

pla,b,c,d) x das(a,b)pacla,c)dsen(b,c,d)dpq(d)da(d)
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Eliminate D

Now let’s eliminate variable D: push the sum over D followed
by all factors involving D to the end

pla)c Y dasla,bdpacla,c)

beQgp,ceQc
Y deep(b,c, d)dr(d)da(d)
deQp
Find all the other variables Uy, ..., Uy involved in any factors

mentioning D (in this case it’s B, C). Call those factors

¢4, ... b5, Make a new factor 3 =3 4cop P --- P
In our case ¢3(b,c) =) 4cap PBCD(b,Cc, d)d1(d)d2(d). Now,
we have a new, equivalent (in terms of its distribution on all the

other variables), factor graph

pla,b,c) x dbagla,b)bac(a,c)ds(b,c)
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Eliminate C

Now let’s eliminate variable C: push the sum over C followed
by all factors involving C to the end

plajoc > basla,b) 3 dacla,c)ds(b,c)
beQgp,ceQc ceQc
Find all the other variables Uy, ..., Uy involved in any factors
mentioning C (in this case it’s A, B). Call those factors
¢4, ... dJ,. Make a new factor ¢4 on Uy, ... Uy defined (using
table multiplication) by:

bq = Z df-e b

ceQC

In our case p4(a,b) =3 .coc dacla,c)ds(b,c). Now, we
have a new, equivalent (in terms of its distribution on all the
other variables), factor graph

pla,b) o dbag(a,b)da(a,b)
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Eliminate B

Now let’s eliminate variable B: push the sum over B followed
by all factors involving B to the end

a)ox Y dasla,b)dala,b)

beQp

Compute ¢ps(a ZbGQB dagl(a,b)ds(a,b). Now, we have a
new, equwalent (in terms of its distribution on all the other
variables), factor graph

p(a) < ¢s(a)
Yay!
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Facts about variable elimination

e Computational complexity is exponential in the number of
variables in the biggest factor you have to compute along
the way

¢ This depends on variable order! What if we choose to
eliminate D first in this problem?

e It’s NP-hard to find the optimal variable order.
e Still, there are heuristics that can make this a good strategy.
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Conjugate families of probability distributions

In order for exact probabilistic inference to be tractable, we
generally need for the joint and conditional distributions of
factors to be conjugate:!

o Let f(64)(a) be the pdf of a random variable A and
f(0g)(b) be the pdf of a random variable B, where f has
some fixed parametric form and 0 specifies a particular pdf
in that family.

e Then the product of the pdfs on A and B has the form
f(0ag)(a,b) where 055 is a function of 4 and 05.

f(0a)(a) - f(65)(b) =f(0aB)(a,b) =f(g(0q,0v))(a,b)

IThe actual definition is more general and specifically relates a prior
distribution and an observation distribution, but this basic idea is what we
needsfornow. 17



Categorical distribution is conjugate family

We have been using the categorical distribution?

0Q*{X1,.. XM}
o OA = (02,...,00) 0% = (07,...,0%)
o fA(0M)(xy) =02 f(08)(x;) = 08

If we multiply these functions on the same variable (e.g. during
message passing), then we get

o fap(0ap)(xi) =008 = Lo/ . 0P

77
where Z = ng 0708

su1o¥adikethe name “multinoulli” better, though! 18



Categorical distribution is conjugate for joint

Combining two categorical distributions on different variables:

o QA:{a1,...,aM} QB :{b1,...,bN}
o A =(0],...,00) 6% = (6%,...,08)
o fA(0M)(a;) =07 fg(08)(by) = 0B

If we multiply these functions on different variables (e.g.
computing the joint when A and B are independent), then we
get

° QAB :_O_AXQB
* faB(0A%)(ai, by) = 07P(a;, by) = 07 - OF
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Univariate Gaussian is conjugate family

[ ] Q :IR
* 0a = (pna,0%) 0s = (kB, 0%5)
o fA(BA)(X) = \/éo;\ exp{—ﬁ(x— ka)?)

* f5(08)(x) = 5 eXp{—QjT%(x— ke )?)

If we multiply these functions on the same variable (e.g. during
Bayes rule), then
® Observe that multiplying f’s yields

1 1

- L Y 2
fAB(eAB)(X)*\/z—no_A Veron exp{ 20%()( HA) 20%(X us)}

® After completing the square and some algebra, we find that
— 1 __1 _ 2
faB(OaB) (x) = o= exp{—55—(x — 1ap)®} where

2 2 2 2

" HAOR + UBOHR o2 04 0R
AB = 2 2 AB = 2 2
o3 + 0% o) + 0%
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Multivariate Gaussian

[ ] Q = RD
e 0=(neRP, L ecRPxD) *// L is positive definite
f D)) =~ expl— s (x— )T T (x — )}
i, 5DTE] sx—n m

|X| is the determinant; figure from Wikipedia

¢ Axes are eigenvectors of
z

o Axis-aligned if ¥ is
diagonal

(x)d

e Round if X is identity
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Fun facts about the multivariate Gaussian

Let’s say our MVG has dimensions 1..D, but we are interested in marginalizing some
of them out, or conditioning some of them on particular values. Let’s divide them into

one set of dimensions A = 1..K and another B = K + 1..D. So, we can think of the

HA Iaa ZAB)
= Z =
" (MB) (ZBA RN

Marginalizing out dimensions A yields Gaussian on B with

parameters as

g =up Zg =g

Conditioning on B = b yields a Gaussian on A with

Hap = HA + IapZgp(b—us) IAp = ZAA — IABIgpIBA
For random variables X4, ..., X;, that are jointly Gaussian with
parameters p, Z:

e The mean of ¢y + }_; ¢iXi, where the c; are constants, is
co+ 2_iCiki

samshhemariance of co + Y _; ciXjisclZc »



Multivariate Gaussian is conjugate family

Product of MVGs:
° QA = ]RD QB = IRD
® 0aA = (HA,ZA) O = (uB,ZB)

If we multiply these functions on the same variable (e.g. during
Bayes rule), then we get an MVG with

s = (S3 +25") 7 (Talua+ Zg'ue)  Zas = (T4 +Z5) 7

Can be useful to define precision: A = £~
Then Aag = Aa + Ag and

wAB = (AA +Ap) (AApA + Asitp)
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Multivariate Gaussian is conjugate for joint

Product of MVGs on different domains
e Op =RPx Qp =RPs
* 0aA = (pa,ZA) 0 = (1B, ZB)
We get an MVG with dimension D = DA + Dg, and

KA Ia O
= Z =
" <us> ( 0 23)
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Gaussian Bayesian networks

Assume the conditional probability distribution for each node
V has the form V ~ Normal(w(\)/ + w{, . pa(V),n%,) where

® w, is a vector of real-valued weights of length N — 1
(number of parents of V) and wy is a scalar offset

. n%/ is the variance of added noise at this node

then the joint distribution over all variables Vi, ..., VN, Vs
Gaussian.

e Assume the parents of node V are normally distributed
with mean up, Zp the distribution over V is normal with

o wy =w) +Wiup
° 0'%/ = T]%/ —i—WTZPW
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Gaussian Bayesian networks

e Assume distribution V ~ Normal(w(\)/ + W\T/ -pa(V), n%)
e Assume the parents of V are normally distributed with
mean Hp, Zp
then the joint distribution over all variables Vi, ..., VN, Vs
Gaussian with

¢ Mean: pp, pv

e Cov:
Lp ZXpy
Thy 0%

where Zpy[i] = Zj Ipli,jl
By induction, you can show that a whole Bayes net with this
linear Gaussian structure defines a joint Gaussian distribution!
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Hybrid networks

Some standard cases:

e Discrete parent of Gaussian nodes: mixture-of-Gaussians
models

¢ Continuous parent of discrete node: apply sigmoid or
softmax to get categorical distribution

6.4110 Spring 2025

27



Gaussian Factor graphs

Make a factor graph in which all potentials are described using
i, X over their neighbor variables.

e Joint distribution (suitably normalized) is a multivariate
Gaussian
e If the graph is a tree, you can do belief propgation, using
exactly the same algorithmic structure as sum-product, but
using operations on Gaussian-PDF-form functions:
e Multiply
¢ Marginalize
e It turns out that it’s usually easier to do it with messages
representing the same information as p, X but in a different
“canonical”) form. We're not going to look at it in detail.
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Next time

e Approximate inference via sampling
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