L03 — Introduction to Graphical Models
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What you should know after this lecture

e Framing of probabilistic inference problem

e How to model a distribution of variables as a factored
distribution

How to represent a factored distribution as a graphical model

How (and why) to multiply and marginalise out random
variables
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Probabilistic belief representation

® Belief is a probability distribution :
B € P(§)
(an element of the set of all
distributions over 8)
¢ Important questions:
®* What is pg(event)?
® What is the most likely state
argmax, pg(s)?
¢ How should we update B given an
observation?
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Belief, query, conditioning
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Probabilistic inference

Given B and Q and possible E, compute Pgg (Q)

Stupidest possible algorithm:
® Enumerate s € §

® accumulate pgg(s)ifs € Q

Our goal: do this without enumerating &

Idea: use factored representation of B, Q, and E to make this
efficient!

6.4110 Spring 2025



Factored representation of B

® Random variables Vy,..., Vn

® Each V; has discrete domain of possible values Qv
® Sample space is product 8§ = Qy, x ... x Qy,

® Sample s € 8is (vq,...,vn) Wherev; € Q,,

® B is the joint distribution on V4, ...,V

¢ Can use a table « to represent B

¢ Use Boolean expressions over atoms V = v to represent Q
and E
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Factored representation: example

¢ Random variables A, B, C
® Domains QO ={0, 1}

b p((a,b,c))
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WhatisP4,(A=1|B=00orC=0)
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Bayes Nets: Compact factored representation of p

Define a Bayesian network « :

® Random variables Vi,..., Vy
® Each V; has discrete domain of possible values Qv
® Directed acyclic graph G defined on nodes V;
¢ Parents pag(V;) : set of nodes Vj with edges (Vj, Vi) € G
® For each V;, a conditional probability table (CPT),
specifying P(V; | parents; (V;))
® For every assignment V to variables in pa (V)

® and every valuev € Qy,
® specify P(Vi =v|pag (Vi) =V)

Then for an assignment s = (vy,...,vn)
Pals) = [ [P(Vi =vi | pag(Vi) = slpag (Vi)])

6.4110 Spring 2025



Classic example

Burglary Earthquake

B_E| P(A=irue|B,E)
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Figure 13.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

® Non-monotonicity of probability
® What's P, (B =1)?
® What'sP,(B=1|M =1)?
* What'sPu(B=1|M=1,E=1)?

® How many params to specify the whole joint as a table?
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Explaining away
Consider the network

Battery -> Gauge <- FuelTank
Here are some CPTs:

Pr(B=1) =0.9

Pr(F=1)=0.9
Pr(G=1|B=1,F=1)=0.8
Pr(G=1|B=1,F=0)=0.2
Pr(G=1|B=0,F=1)=0.2

® What is the pI‘iOPI|: {hat the tank is %)nTpot';l? Pr(F=0) =0.1
® What if we observe the fuel gauge and find that it reads
empty? Pr(F=0| G =0) = 0.257
® Now, what if we find the battery is dead?
Pr(F=0] G =0,B =0) =~ 0.111 The probability that the
tank is empty has decreased! Finding that the battery is flat
6Azmosexglains away the empty fuel tank reading. o



Independence relations

Are we getting something for nothing?

¢ Independence of random variables: If
P(A=a,B=b)=P(A =a)P(B =D0) forall
a € Qq,b € Qp, we say that A and B are independent:
A L B.

¢ Conditional independence: f P(A =a,B=b|C=¢,D =
d)=P(A=a|C=¢,D=d)P(B=b|C=¢c,D=4d)forall
a€Qap,beOp,ceQc,de OQq,wesay that A and B are
conditionally independent given Cand D, A L B | C, D.

® Bayes nets get their compactness from independence
assumptions encoded in the graph.
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Graph structure encodes independence relations

S, _—
D -0 &

® Case 1: P(B|A), P(C|A) “outgoing” connection
® B JC,butB L C|A
® Case 2: P(B|A), P(C|B) “flow” connection
e CIA,butCLA|B
® Case 3: P(C|A, B) “incoming” connection
* A LB,butA /B|C
In general Vi L Vj | E4, ..., Ex if there are no paths from V; to
Vj through outgoing or flow connections that are not blocked
by E or through an incoming connection that is enabled by E.
More about this when we get to factor graphs and Markov
blankets.
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Simple inference algorithm

Given a BN, we have a conceptually (but not computationally)
simple way to compute the joint

Pals) = [ [P(Vi =vi | pag(Vi) = slpag(Vi)])

We can think of this as multiplying the CPTS in the Bayes net.
Informally:

Murtirry (D14, Do)

1 m = table indexed by Qyrs(D;)Uvars(D,)

2 forvinm

3 n(v) = lookup(v, D1) - lookup(v, D2)
4 returnm
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Multiplication example

Given CPTs, D1 = P(X5|X1) and D> = P(X3|X1), defined over
different variable sets:

Xo Xs | P
T T 0.1 x 0.9=0.09
T T F 0.1 x 0.1 =0.01
T F T 0.9 x 0.1 =0.09
Murtiey(D4,D2) = T F F | 09x0.9=0.81
F T T 0.9 x 0.9 =0.81
F T F 0.9 x 0.1 =0.09
F F T | 01x0.1=0.01
F F F 0.1 x 0.9=0.09

What is the meaning of this multiplication?
P(XalX1) x P(X5|X1) = P(Xz, X3lX1).

Practice on explaining-away example
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Undirected models

® Directed models (Bayes nets) are good for many problems,
particularly when there is a causal interpretation of the
arrows. (Though causality is not necessary)

® Relationship between pixels in an image or adjacent plots
of property is not independent but there’s no sensible way
to assign a direction.

¢ Can make graphical models with nodes and undirected
arcs: Markov random fields

® We will skip that step and go straight to a formalism called
factor graphs that can represent both directed and
undirected models.

® A generalization of factor graphs for CSPs!!
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Factor graphs

Undirected bipartite graph: factors only connect to variables
® Round nodes are random variables V
® Square nodes are factors ¢: tables specifying, for each tuple

of value of the connected variables, a non-negative number
® Represent a probability distribution (e.g. left graph above)

P((a7b! c, d! e, f)) = %(b‘] (a)(bg(b](ba(a, b’ d)(b4((1, C)¢5(d1 9)4)5(6, e)(])7(c,f)
where Z is a normalizer

Z= )  di(a)b2(b)dsla, b, d)dala, c)ds(d, g)ds(c, e)dr(c,f)

a,b,c,d,e,f
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Bayes nets to factor graphs

® Variable nodes are the same
e Add one factor for each CPT
¢ Connect it to the “output” node and all parents

¢ Note that, for this construction Z = 1 (no need to
normalize!)
Prove this to yourself by recalling the probability
distribution represented by a Bayes net.
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Independence relations in factor graphs

® The Markov blanket of a node V consists of all nodes that
are connected to any factor connected to V.

® The Markov blanket of A in our example is {B, D, C}

® Anode V is not, in general, independent of any node in its
MB

¢ Anode V is conditionally independent of the rest of the
graph, conditioned on mb(V)

® There are some sets of independence relations that are
describable by a Bayes net but not describable by a factor
graph (and vice versa)
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Inference in factor graphs

Some inference problems:

® Joint distribution: In a factor graph, use table
multiplication to compute a big table

12 H br
k
where Z is the sum of all table entries
® Marginal distribution: P(Y) where Y C V
¢ Conditional probability: P(Y |E =e), whereY CV,ECV,
and YN E = 0; and e is the observed values of the variables

in E. Note that it is not necessary that YUE = V.
® Most probable assignment (MAP):

argmaxyP(Y=y|E=e) .

Note that the MAP of a set of variables is not necessarily
sanostheset of MAPs of the individual variables. 19



PGMs and CSPs

¢ In both PGMs and CSPs, the nodes represent variables,
with finite domains.

® The factors are tables of values, one for each assignment of
the variables they are connected to.

® In CSPs, the values have to be 0 and 1.
¢ In PGMs, the values can be any non-negative number.
® The factor graph of a CSP defines a set of assignments.

® The factor graph of a PGM defines a distribution over
assignments.
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Next time

* We would like to avoid computing the whole joint
distribution!!

¢ Algorithms whose complexity depends on the complexity
of the network (rather than the product of the domains of
all the variables)
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