
L03 – Introduction to Graphical Models

AIMA4e, 13.1–2
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What you should know after this lecture
• Framing of probabilistic inference problem
• How to model a distribution of variables as a factored

distribution
• How to represent a factored distribution as a graphical model
• How (and why) to multiply and marginalise out random

variables
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Probabilistic belief representation

• Belief is a probability distribution :
B ∈ P(S)
(an element of the set of all
distributions over S)

• Important questions:
• What is pB(event)?
• What is the most likely state

argmaxs pB(s)?
• How should we update B given an

observation?
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Belief, query, conditioning
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Probabilistic inference

Given B and Q and possible E, compute PB|E(Q)

Stupidest possible algorithm:
• Enumerate s ∈ S

• accumulate pB|E(s) if s ∈ Q

Our goal: do this without enumerating S

Idea: use factored representation of B, Q, and E to make this
efficient!
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Factored representation of B

• Random variables V1, . . . ,Vn

• Each Vi has discrete domain of possible values ΩVi

• Sample space is product S = ΩV1 × . . . ×ΩVn

• Sample s ∈ S is (v1, . . . , vn) where vi ∈ Ωvi

• B is the joint distribution on V1, . . . ,Vn

• Can use a table α to represent B
• Use Boolean expressions over atoms V = v to represent Q

and E

6.4110 Spring 2025 6



Factored representation: example

• Random variables A,B,C
• Domains Ω = {0, 1}

α =

a b c p((a,b, c))

0 0 0 0.10
0 0 1 0.20
0 1 0 0.05
0 1 1 0.05
1 0 0 0.30
1 0 1 0.05
1 1 0 0.15
1 1 1 0.10

What is Pα(A = 1 | B = 0 or C = 0)
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Bayes Nets: Compact factored representation of p

Define a Bayesian network α :
• Random variables V1, . . . ,Vn

• Each Vi has discrete domain of possible values ΩVi

• Directed acyclic graph G defined on nodes Vi

• Parents paG(Vi) : set of nodes Vj with edges (Vj,Vi) ∈ G

• For each Vi, a conditional probability table (CPT),
specifying P(Vi | parentsG(Vi))

• For every assignment v̄ to variables in paG(Vi)
• and every value v ∈ ΩVi

• specify P(Vi = v | paG(Vi) = v̄)

Then for an assignment s = (v1, . . . , vn)

pα(s) =
∏
i

P(Vi = vi | paG(Vi) = s[paG(Vi)])
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Classic example

• Non-monotonicity of probability
• What’s Pα(B = 1)?
• What’s Pα(B = 1 | M = 1)?
• What’s Pα(B = 1 | M = 1,E = 1)?
• How many params to specify the whole joint as a table?
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Explaining away
Consider the network

Battery -> Gauge <- FuelTank

Here are some CPTs:
Pr(B = 1) = 0.9

Pr(F = 1) = 0.9

Pr(G = 1 | B = 1,F = 1) = 0.8

Pr(G = 1 | B = 1,F = 0) = 0.2

Pr(G = 1 | B = 0,F = 1) = 0.2

Pr(G = 1 | B = 0,F = 0) = 0.1• What is the prior that the tank is empty? Pr(F = 0) = 0.1
• What if we observe the fuel gauge and find that it reads

empty? Pr(F = 0 | G = 0) ≈ 0.257
• Now, what if we find the battery is dead?

Pr(F = 0 | G = 0,B = 0) ≈ 0.111 The probability that the
tank is empty has decreased! Finding that the battery is flat
explains away the empty fuel tank reading.
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Independence relations

Are we getting something for nothing?
• Independence of random variables: If
P(A = a,B = b) = P(A = a)P(B = b) for all
a ∈ Ωa,b ∈ Ωb, we say that A and B are independent:
A ⊥⊥ B.

• Conditional independence: If P(A = a,B = b | C = c,D =
d) = P(A = a | C = c,D = d)P(B = b | C = c,D = d) for all
a ∈ ΩA,b ∈ ΩB, c ∈ ΩC,d ∈ Ωd, we say that A and B are
conditionally independent given C and D, A ⊥⊥ B | C,D.

• Bayes nets get their compactness from independence
assumptions encoded in the graph.
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Graph structure encodes independence relations
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• Case 1: P(B|A),P(C|A) “outgoing” connection
• B ⊥⊥/C, but B ⊥⊥ C | A

• Case 2: P(B|A),P(C|B) “flow” connection
• C ⊥⊥/A, but C ⊥⊥ A | B

• Case 3: P(C|A,B) “incoming” connection
• A ⊥⊥ B, but A ⊥⊥/B | C

In general Vi ⊥⊥ Vj | E1, . . . ,EK if there are no paths from Vi to
Vj through outgoing or flow connections that are not blocked
by E or through an incoming connection that is enabled by E.
More about this when we get to factor graphs and Markov
blankets.
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Simple inference algorithm

Given a BN, we have a conceptually (but not computationally)
simple way to compute the joint

pα(s) =
∏
i

P(Vi = vi | paG(Vi) = s[paG(Vi)])

We can think of this as multiplying the CPTS in the Bayes net.
Informally:

Multiply(D1,D2)

1 π = table indexed by Ωvars(D1)∪vars(D2)

2 for v̄ in π

3 π(v̄) = lookup(v̄,D1) · lookup(v̄,D2)
4 return π
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Multiplication example
Given CPTs, D1 = P(X2|X1) and D2 = P(X3|X1), defined over
different variable sets:

D1 =

X1 X2 P
T T 0.1
T F 0.9
F T 0.9
F F 0.1

D2 =

X1 X3 P
T T 0.9
T F 0.1
F T 0.1
F F 0.9

Multiply(D1,D2) =

X1 X2 X3 P
T T T 0.1 × 0.9 = 0.09
T T F 0.1 × 0.1 = 0.01
T F T 0.9 × 0.1 = 0.09
T F F 0.9 × 0.9 = 0.81
F T T 0.9 × 0.9 = 0.81
F T F 0.9 × 0.1 = 0.09
F F T 0.1 × 0.1 = 0.01
F F F 0.1 × 0.9 = 0.09

What is the meaning of this multiplication?
P(X2|X1)× P(X3|X1) = P(X2,X3|X1).
Practice on explaining-away example
6.4110 Spring 2025 14



Undirected models

• Directed models (Bayes nets) are good for many problems,
particularly when there is a causal interpretation of the
arrows. (Though causality is not necessary)

• Relationship between pixels in an image or adjacent plots
of property is not independent but there’s no sensible way
to assign a direction.

• Can make graphical models with nodes and undirected
arcs: Markov random fields

• We will skip that step and go straight to a formalism called
factor graphs that can represent both directed and
undirected models.

• A generalization of factor graphs for CSPs!!
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Factor graphs
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Undirected bipartite graph: factors only connect to variables
• Round nodes are random variables V
• Square nodes are factors ϕ: tables specifying, for each tuple

of value of the connected variables, a non-negative number
• Represent a probability distribution (e.g. left graph above)

P((a,b, c,d, e, f)) =
1
Z
ϕ1(a)ϕ2(b)ϕ3(a,b,d)ϕ4(a, c)ϕ5(d,g)ϕ6(c, e)ϕ7(c, f)

where Z is a normalizer

Z =
∑

a,b,c,d,e,f

ϕ1(a)ϕ2(b)ϕ3(a,b,d)ϕ4(a, c)ϕ5(d,g)ϕ6(c, e)ϕ7(c, f)
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Bayes nets to factor graphs

• Variable nodes are the same
• Add one factor for each CPT
• Connect it to the “output” node and all parents
• Note that, for this construction Z = 1 (no need to

normalize!)
Prove this to yourself by recalling the probability
distribution represented by a Bayes net.
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Independence relations in factor graphs

• The Markov blanket of a node V consists of all nodes that
are connected to any factor connected to V .

• The Markov blanket of A in our example is {B,D,C}
• A node V is not, in general, independent of any node in its

MB
• A node V is conditionally independent of the rest of the

graph, conditioned on mb(V)
• There are some sets of independence relations that are

describable by a Bayes net but not describable by a factor
graph (and vice versa)
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Inference in factor graphs
Some inference problems:

• Joint distribution: In a factor graph, use table
multiplication to compute a big table

1
Z

∏
k

ϕk

where Z is the sum of all table entries
• Marginal distribution: P(Y) where Y ⊂ V

• Conditional probability: P(Y | E = e), where Y ⊂ V, E ⊂ V,
and Y ∩ E = ∅; and e is the observed values of the variables
in E. Note that it is not necessary that Y ∪ E = V.

• Most probable assignment (MAP):

argmaxyP(Y = y | E = e) .

Note that the MAP of a set of variables is not necessarily
the set of MAPs of the individual variables.6.4110 Spring 2025 19



PGMs and CSPs

• In both PGMs and CSPs, the nodes represent variables,
with finite domains.

• The factors are tables of values, one for each assignment of
the variables they are connected to.

• In CSPs, the values have to be 0 and 1.
• In PGMs, the values can be any non-negative number.
• The factor graph of a CSP defines a set of assignments.
• The factor graph of a PGM defines a distribution over

assignments.
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Next time

• We would like to avoid computing the whole joint
distribution!!

• Algorithms whose complexity depends on the complexity
of the network (rather than the product of the domains of
all the variables)
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