L03 – Introduction to Graphical Models

AIMA4e, 13.1-2

What you should know after this lecture

- Framing of probabilistic inference problem
- How to model a distribution of variables as a factored distribution
- How to represent a factored distribution as a graphical model
- How (and why) to multiply and marginalise out random variables

Probabilistic belief representation

- Belief is a probability distribution : B ∈ 𝒫(𝔅) (an element of the set of all distributions over 𝔅)
- Important questions:
 - What is $p_B(event)$?
 - What is the most likely state argmax_s p_B(s)?
 - How should we update B given an observation?

Belief, query, conditioning

Probabilistic inference

Given B and Q and possible E, compute $\mathsf{P}_{\mathsf{B}|\mathsf{E}}(Q)$

Stupidest possible algorithm:

- Enumerate $s \in S$
- $\bullet \ \ \text{accumulate} \ p_{B|E}(s) \ \text{if} \ s \in Q$

Our goal: do this without enumerating S

Idea: use factored representation of B, Q, and E to make this efficient!

Factored representation of B

- Random variables V_1, \ldots, V_n
- Each V_i has discrete domain of possible values Ω_{V_i}
- Sample space is product $\boldsymbol{\vartheta} = \boldsymbol{\Omega}_{V_1} \times \ldots \times \boldsymbol{\Omega}_{V_n}$
- Sample $s \in S$ is (v_1, \ldots, v_n) where $v_i \in \Omega_{v_i}$
- B is the joint distribution on V_1, \ldots, V_n
- Can use a table α to represent B
- Use Boolean expressions over atoms $V=\nu$ to represent Q and E

Factored representation: example

- Random variables A, B, C
- Domains $\Omega = \{0, 1\}$

	a	b	с	p((a, b, c))
	0	0	0	0.10
	0	0	1	0.20
	0	1	0	0.05
$\alpha =$	0	1	1	0.05
	1	0	0	0.30
	1	0	1	0.05
	1	1	0	0.15
	1	1	1	0.10

What is
$$P_{\alpha}(A = 1 | B = 0 \text{ or } C = 0)$$

6.4110 Spring 2025

Bayes Nets: Compact factored representation of p

Define a Bayesian network α :

- Random variables V_1, \ldots, V_n
- Each V_i has discrete domain of possible values Ω_{V_i}
- Directed acyclic graph G defined on nodes V_i
- Parents $\text{pa}_G(V_i)$: set of nodes V_j with edges $(V_j,V_i)\in G$
- For each V_i , a conditional probability table (CPT), specifying $P(V_i | parents_G(V_i))$
 - For every assignment \bar{v} to variables in $pa_G(V_i)$
 - and every value $v \in \Omega_{V_i}$
 - specify $P(V_i = v | pa_G(V_i) = \bar{v})$

Then for an assignment $s = (v_1, \dots, v_n)$

$$p_{\alpha}(s) = \prod_{i} P(V_i = v_i \mid pa_G(V_i) = s[pa_G(V_i)])$$

Classic example

Figure 13.2 A typical Bayesian network, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters *B*, *E*, *A*, *J*, and *M* stand for *Burglary*, *Earthquake*, *Alarm*, *JohnCalls*, and *MaryCalls*, respectively.

• Non-monotonicity of probability

- What's $P_{\alpha}(B = 1)$?
- What's $P_{\alpha}(B = 1 | M = 1)$?
- What's $P_{\alpha}(B = 1 | M = 1, E = 1)$?

• How many params to specify the whole joint as a table? 6.4110 Spring 2025

9

Explaining away

Consider the network

Battery -> Gauge <- FuelTank

Here are some CPTs:

$$Pr(B = 1) = 0.9$$

$$Pr(F = 1) = 0.9$$

$$Pr(G = 1 | B = 1, F = 1) = 0.8$$

$$Pr(G = 1 | B = 1, F = 0) = 0.2$$

$$Pr(G = 1 | B = 0, F = 1) = 0.2$$

- What is the prior that the tank is empty? Pr(F = 0) = 0.1
- What if we observe the fuel gauge and find that it reads empty? $Pr(F=0 \mid G=0) \approx 0.257$
- Now, what if we find the battery is dead? $Pr(F = 0 | G = 0, B = 0) \approx 0.111$ The probability that the tank is empty has <u>decreased</u>! Finding that the battery is flat explains away the empty fuel tank reading.

Independence relations

Are we getting something for nothing?

- Independence of random variables: If P(A = a, B = b) = P(A = a)P(B = b) for all $a \in \Omega_a, b \in \Omega_b$, we say that A and B are <u>independent</u>: $A \perp B$.
- Conditional independence: If P(A = a, B = b | C = c, D = d) = P(A = a | C = c, D = d)P(B = b | C = c, D = d) for all $a \in \Omega_A, b \in \Omega_B, c \in \Omega_C, d \in \Omega_d$, we say that A and B are conditionally independent given C and D, A $\perp B | C, D$.
- Bayes nets get their compactness from independence assumptions encoded in the graph.

Graph structure encodes independence relations

- Case 1: P(B|A), P(C|A) "outgoing" connection
 - $B \not\perp C$, but $B \perp C \mid A$
- Case 2: P(B|A), P(C|B) "flow" connection
 - C *⊥*A, but C *⊥* A | B
- Case 3: P(C|A, B) "incoming" connection
 - A ⊥ B, but A ↓B | C

In general $V_i \perp V_j \mid E_1, \ldots, E_K$ if there are no paths from V_i to V_j through outgoing or flow connections that are not blocked by E or through an incoming connection that is enabled by E. More about this when we get to factor graphs and Markov blankets. 6.4110 Spring 2025

Simple inference algorithm

Given a BN, we have a conceptually (but not computationally) simple way to compute the joint

$$p_{\alpha}(s) = \prod_{i} P(V_{i} = v_{i} \mid pa_{G}(V_{i}) = s[pa_{G}(V_{i})])$$

We can think of this as multiplying the CPTS in the Bayes net. Informally:

 $Multiply(D_1, D_2)$

- 1 π = table indexed by $\Omega_{vars(D_1) \cup vars(D_2)}$
- 2 for $\bar{\nu}$ in π

3
$$\pi(\bar{\nu}) = \text{lookup}(\bar{\nu}, D_1) \cdot \text{lookup}(\bar{\nu}, D_2)$$

4 return π

Multiplication example

Given CPTs, $D_1 = P(X_2|X_1)$ and $D_2 = P(X_3|X_1)$, defined over different variable sets:

	X_1	X2	Р		X_1	X_3	Р
-	Т	Т	0.1		Т	Т	0.9
$D_1 =$	Т	F	0.9	$D_2 =$	Т	F	0.1
	F	Т	0.9		F	Т	0.1
	F	F	0.1		F	F	0.9

What is the meaning of this multiplication? $P(X_2|X_1) \times P(X_3|X_1) = P(X_2, X_3|X_1).$ Practice on explaining-away example ^{6.4110 Spring 2025}

Undirected models

- Directed models (Bayes nets) are good for many problems, particularly when there is a causal interpretation of the arrows. (Though causality is not necessary)
- Relationship between pixels in an image or adjacent plots of property is not independent but there's no sensible way to assign a direction.
- Can make graphical models with nodes and undirected arcs: Markov random fields
- We will skip that step and go straight to a formalism called <u>factor graphs</u> that can represent both directed and undirected models.
- A generalization of factor graphs for CSPs!!

Factor graphs

Undirected bipartite graph: factors only connect to variables

- Round nodes are random variables V
- Square nodes are <u>factors</u> φ: tables specifying, for each tuple of value of the connected variables, a non-negative number
- Represent a probability distribution (e.g. left graph above)

$$\mathsf{P}((\mathfrak{a},\mathfrak{b},\mathfrak{c},\mathfrak{d},\mathfrak{e},\mathfrak{f})) = \frac{1}{\mathsf{Z}} \phi_1(\mathfrak{a})\phi_2(\mathfrak{b})\phi_3(\mathfrak{a},\mathfrak{b},\mathfrak{d})\phi_4(\mathfrak{a},\mathfrak{c})\phi_5(\mathfrak{d},\mathfrak{g})\phi_6(\mathfrak{c},\mathfrak{e})\phi_7(\mathfrak{c},\mathfrak{f})$$

where Z is a normalizer

$$Z = \sum_{a,b,c,d,e,f} \phi_1(a)\phi_2(b)\phi_3(a,b,d)\phi_4(a,c)\phi_5(d,g)\phi_6(c,e)\phi_7(c,f)$$

6.4110 Spring 2025

Bayes nets to factor graphs

- Variable nodes are the same
- Add one factor for each CPT
- Connect it to the "output" node and all parents
- Note that, for this construction Z = 1 (no need to normalize!)
 Prove this to yourself by recalling the probability distribution represented by a Bayes net.

Independence relations in factor graphs

- The <u>Markov blanket</u> of a node V consists of all nodes that are connected to any factor connected to V.
- The Markov blanket of A in our example is {B, D, C}
- A node V is <u>not</u>, in general, independent of any node in its MB
- A node V is conditionally independent of the rest of the graph, conditioned on mb(V)
- There are some sets of independence relations that are describable by a Bayes net but not describable by a factor graph (and vice versa)

Inference in factor graphs

Some inference problems:

• <u>Joint distribution</u>: In a factor graph, use table multiplication to compute a big table

$$\frac{1}{Z}\prod_k \phi_k$$

where Z is the sum of all table entries

- <u>Marginal distribution</u>: P(Y) where $Y \subset \mathcal{V}$
- <u>Conditional probability</u>: P(Y | E = e), where $Y \subset V$, $E \subset V$, and $Y \cap E = \emptyset$; and *e* is the observed values of the variables in E. Note that it is not necessary that $Y \cup E = V$.
- Most probable assignment (MAP):

$$\operatorname{argmax} y P(Y = y | E = e)$$
.

Note that the MAP of a set of variables is not necessarily 6.4110 sthe 2set of MAPs of the individual variables.

PGMs and CSPs

- In both PGMs and CSPs, the nodes represent variables, with finite domains.
- The factors are tables of values, one for each assignment of the variables they are connected to.
- In CSPs, the values have to be 0 and 1.
- In PGMs, the values can be any non-negative number.
- The factor graph of a CSP defines a **set** of assignments.
- The factor graph of a PGM defines a **distribution** over assignments.

Next time

- We would like to avoid computing the whole joint distribution!!
- Algorithms whose complexity depends on the complexity of the network (rather than the product of the domains of all the variables)