
L02: Constraint Satisfaction

AIMA4e: Chapter 6.1–5

6.4110 Spring 2025 1



What you should know after this lecture

• CSP solution strategies:
• Backtracking
• Forward checking
• Learning within a problem (if we have time)
• Local search

• Constraint graphs

6.4110 Spring 2025 2



Constraint-satisfaction problem: formal definition

• X is a set of variables {X1, . . . ,Xn}
• D is a set of domains {D1, . . . ,Dn}, where Di = {x1, . . . , xk}

is the set of possible values of Xi
• C is a set of constraints:

• scope : a tuple of variables
• relation : a relation specifying tuples of values that this

tuple of variables can legally take on

Define:
• assignment : mapping from variables to values
• partial assignment: only provides values for some variables
• consistent assignment : partial assignment that doesn’t

violate any constraints
• solution : complete assignment that doesn’t violate any

constraints
6.4110 Spring 2025 3



CSPs: factored belief representation

• Set-based belief : B ⊂ S

• B = {(x1, . . . , xn) for xi ∈ Di |
consistent((x1, . . . , xn),C)}

• Each time we add a constraint (get new
information), we reduce the set of
possible world states.

• We might be interested in the possible
set of values of Xi, after all the
constraints have been taken into
account.

6.4110 Spring 2025 4



Constraints

• Unary constraint only involves a single variable: use to
reduce the domain of that variable

• Binary constraint involves two variables (domains can be
any size). We will focus on binary constraints. Discussion
in book and HW problem on reducing higher-order
constraints to binary, and other ways of handling them.

Constraint (hyper)graph: useful to visualize constraint
structure

A

BF

E D

C A

B

F

E D

C

If it does not contain any loops, then there’s a cool, efficient
message passing algorithm.
6.4110 Spring 2025 5



Factory problem: smaller

Objects:
• Machines: sander, painter, dryer
• Parts: A,B
• Times: 1, . . . , 4

Constraints:
• Each part must be sanded before painted before dried.
• The sander and painter can each operate on at most one

part at a time.
• The sander can’t operate at the same time the dryer is

operating.
One formulation: Variables: pm: when is part p in machinem?
Domain of variables are times.

6.4110 Spring 2025 6



Hey robot, where are my keys?

• Rooms: bedroom, bathroom, office, kitchen
• Objects: keys, laptop, wallet, purse

Constraints:
• My keys are in the same place as my wallet.
• My wallet is not in my purse.
• My purse is next to my laptop.
• My laptop is in my office.
• I would never put my wallet in the bathroom.

Where should the robot look?

6.4110 Spring 2025 7



Backtracking (= depth-first search)

a is an assignment, initially { }

backtrack(a)

if complete(a): return a
X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x})
r = backtrack(a)
if r , ’failed’: return r // Save r and continue to generate all solutions
remove(a, {X = x})

return ’failed’

Is this better than the stupidest possible algorithm?

6.4110 Spring 2025 8



Variable and value ordering

Dynamically, during search:
• variables: unassigned-var chooses the variable with the

fewest values in its domain
• values: domain-values orders values earlier that rule out

the fewest choices for variables it’s connected to in the
constraint graph

These will be especially useful in combination with some
inference methods.

6.4110 Spring 2025 9



Basic arc consistency: inference method

revise(Xi,Xj,Cij)
Given:
• Two variables: Xi and Xj with domains: Di and Dj
• Constraint Cij

Di := {xi ∈ Di | ∃xj ∈ Dj. (xi, xj) ∈ Cij}

Removes values from domain of Xi that are inconsistent with
values of domain of Xj.
Easy to extend to take C as argument and pick out relevant
constraints.

� Usually, for efficiency, we implement with side effects.
Be careful to undo!

6.4110 Spring 2025 10



BT with forward checking

fc(X,a):
for Xi ∈ (unassigned-var(a) ∩ neighbors(X))

revise(Xi,X)
if Di = { }: return ’failed’

backtrack-fc(a)
if complete(a): return a
X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x})
r = fc(X,a)
if r , ’failed’:

r = backtrack(a)
if r , ’failed’: return r

remove(a, {X = x}); undo-fc(X,a)
return ’failed’

6.4110 Spring 2025 11



Arc consistency

Can work harder to be sure that all arcs are consistent.
• See AC-3 alg in book.
• Roughly, keep doing revise until no domains change

further.
• Completely solves some problems.
• bt-ac3 often more expensive than bt-fc.
• Can extend the idea to making k-tuples (for k > 2) of

variables consistent.

6.4110 Spring 2025 12



Backjumping

Sometimes we have made a poor initial choice, but end up with
endlessly considering assignments to irrelevant variables.
• Whenever a dead-end occurs at variable X, backtrack to

the “most recent” variable that is connected to X in the
constraint graph.

• Can be very helpful!

� Requires careful bookkeeping to be sure all the right
assignments and inferences are undone.

AIMA4e asserts that any assignment that is pruned by
backjumping will also be pruned by forward-checking. Prove it
to yourself!

6.4110 Spring 2025 13



Learning while searching

Idea: find assignments that are no good: not simply
inconsistent themselves, but such that there is no possible way
to assign the rest of the variables.
• conflict set for a variable X: Set of variables X ′ and values
x ′ such that there is no assignment to X consistent with
X ′ = x ′. It’s minimal if no subset of it is a conflict set.

• Once you discover a conflict set, don’t ever try it again!
• Add a constraint that forbids this assignment and keep

going. (But note that it’s non-binary).
Identifying and recording only conflict sets which are known to
be minimal constitutes deep learning. – Dechter, AIJ, 1990

6.4110 Spring 2025 14



Local search: a very different strategy!

• Start with a complete assignment, with constraint viols
• Until you reach a satisfying assignment: pick a variable

and assign a new value.
Guidance helps! Min-conflicts heuristic:
• Randomly choose a variable that is in conflict (violating

some constraint)
• Assign it the value that will minimize the total number of

constraints violated.
Simulated annealing:
• Propose a move (variable and value) at random.
• If it reduces the number of conflicts, accept it.
• If it does not, accept anyway, with probability e−∆/T

where ∆ is number of conflicts added and T is a
temperature parameter that is decreased over time.

Min conflict not guaranteed to find solution; simulated
annealing is (eventually)6.4110 Spring 2025 15



Message passing

When your constraint (hyper)graph is a tree (has no loops) then
there’s a super-cool algorithm!
• Pick any node to be root
• Construct a topological sort: every node is in the list after

its parent.
• Starting at the end of the list, do, for each X
revise(parent(X),X)

• Each X is left with a domain such that any value in the
remaining domain is consistent with the whole subtree
beneath it.

• After this O(n) processing, select any value at root, and
work forward selecting any consistent value. No
backtracking needed.

6.4110 Spring 2025 16



But! What if you don’t have a tree?

Three strategies:
• Run the variable elimination algorithm, which runs in

exponential time in the “tree width” of the constraint graph
• Make a tree by combining some variables into

super-variables with the product of their domains and do
message-passing.

• Find a cutset: a set of variables, such that if they were
removed, the remaining (hyper)graph would be a tree.
• Do backtracking on values of the variables in the cutset
• Given an assignment to those variables, do

message-passing to try to find assignment to the rest.

We will see these algorithms again in probabilistic inference!

6.4110 Spring 2025 17



Next time

• Probabilistic graphical models (factor graphs, in particular)
are a generalization of CSPs!

6.4110 Spring 2025 18


