
L02: Constraint Satisfaction

AIMA4e: Chapter 6.1–5
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What you should know after this lecture

• CSP solution strategies:
• Backtracking
• Forward checking
• Learning within a problem (if we have time)
• Local search

• Constraint graphs
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Constraint-satisfaction problem: formal definition

• X is a set of variables {X1, . . . ,Xn}
• D is a set of domains {D1, . . . ,Dn}, where Di = {x1, . . . , xk}

is the set of possible values of Xi
• C is a set of constraints:

• scope : a tuple of variables
• relation : a relation specifying tuples of values that this

tuple of variables can legally take on

Define:
• assignment : mapping from variables to values
• partial assignment: only provides values for some variables
• consistent assignment : partial assignment that doesn’t

violate any constraints
• solution : complete assignment that doesn’t violate any

constraints
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CSPs: factored belief representation

• Set-based belief : B ⊂ S

• B = {(x1, . . . , xn) for xi ∈ Di |
consistent((x1, . . . , xn),C)}

• Each time we add a constraint (get new
information), we reduce the set of
possible world states.

• We might be interested in the possible
set of values of Xi, after all the
constraints have been taken into
account.
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Constraints

• Unary constraint only involves a single variable: use to
reduce the domain of that variable

• Binary constraint involves two variables (domains can be
any size). We will focus on binary constraints. Discussion
in book and HW problem on reducing higher-order
constraints to binary, and other ways of handling them.

Constraint (hyper)graph: useful to visualize constraint
structure
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If it does not contain any loops, then there’s a cool, efficient
message passing algorithm.
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Factory problem: smaller

Objects:
• Machines: sander, painter, dryer
• Parts: A,B
• Times: 1, . . . , 4

Constraints:
• Each part must be sanded before painted before dried.
• The sander and painter can each operate on at most one

part at a time.
• The sander can’t operate at the same time the dryer is

operating.
One formulation: Variables: pm: when is part p in machinem?
Domain of variables are times.

6.4110 Spring 2025 6



Hey robot, where are my keys?

• Rooms: bedroom, bathroom, office, kitchen
• Objects: keys, laptop, wallet, purse

Constraints:
• My keys are in the same place as my wallet.
• My wallet is not in my purse.
• My purse is next to my laptop.
• My laptop is in my office.
• I would never put my wallet in the bathroom.

Where should the robot look?
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Backtracking (= depth-first search)

a is an assignment, initially { }

backtrack(a)

if complete(a): return a
X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x})
r = backtrack(a)
if r , ’failed’: return r // Save r and continue to generate all solutions
remove(a, {X = x})

return ’failed’

Is this better than the stupidest possible algorithm?
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Variable and value ordering

Dynamically, during search:
• variables: unassigned-var chooses the variable with the

fewest values in its domain
• values: domain-values orders values earlier that rule out

the fewest choices for variables it’s connected to in the
constraint graph

These will be especially useful in combination with some
inference methods.
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Basic arc consistency: inference method

revise(Xi,Xj,Cij)
Given:
• Two variables: Xi and Xj with domains: Di and Dj
• Constraint Cij

Di := {xi ∈ Di | ∃xj ∈ Dj. (xi, xj) ∈ Cij}

Removes values from domain of Xi that are inconsistent with
values of domain of Xj.
Easy to extend to take C as argument and pick out relevant
constraints.

� Usually, for efficiency, we implement with side effects.
Be careful to undo!
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BT with forward checking

fc(X,a):
for Xi ∈ (unassigned-var(a) ∩ neighbors(X))

revise(Xi,X)
if Di = { }: return ’failed’

backtrack-fc(a)
if complete(a): return a
X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x})
r = fc(X,a)
if r , ’failed’:

r = backtrack(a)
if r , ’failed’: return r

remove(a, {X = x}); undo-fc(X,a)
return ’failed’
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Arc consistency

Can work harder to be sure that all arcs are consistent.
• See AC-3 alg in book.
• Roughly, keep doing revise until no domains change

further.
• Completely solves some problems.
• bt-ac3 often more expensive than bt-fc.
• Can extend the idea to making k-tuples (for k > 2) of

variables consistent.
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Backjumping

Sometimes we have made a poor initial choice, but end up with
endlessly considering assignments to irrelevant variables.
• Whenever a dead-end occurs at variable X, backtrack to

the “most recent” variable that is connected to X in the
constraint graph.

• Can be very helpful!

� Requires careful bookkeeping to be sure all the right
assignments and inferences are undone.

AIMA4e asserts that any assignment that is pruned by
backjumping will also be pruned by forward-checking. Prove it
to yourself!
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Learning while searching

Idea: find assignments that are no good: not simply
inconsistent themselves, but such that there is no possible way
to assign the rest of the variables.
• conflict set for a variable X: Set of variables X ′ and values
x ′ such that there is no assignment to X consistent with
X ′ = x ′. It’s minimal if no subset of it is a conflict set.

• Once you discover a conflict set, don’t ever try it again!
• Add a constraint that forbids this assignment and keep

going. (But note that it’s non-binary).
Identifying and recording only conflict sets which are known to
be minimal constitutes deep learning. – Dechter, AIJ, 1990
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Local search: a very different strategy!

• Start with a complete assignment, with constraint viols
• Until you reach a satisfying assignment: pick a variable

and assign a new value.
Guidance helps! Min-conflicts heuristic:
• Randomly choose a variable that is in conflict (violating

some constraint)
• Assign it the value that will minimize the total number of

constraints violated.
Simulated annealing:
• Propose a move (variable and value) at random.
• If it reduces the number of conflicts, accept it.
• If it does not, accept anyway, with probability e−∆/T

where ∆ is number of conflicts added and T is a
temperature parameter that is decreased over time.

Min conflict not guaranteed to find solution; simulated
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Message passing

When your constraint (hyper)graph is a tree (has no loops) then
there’s a super-cool algorithm!
• Pick any node to be root
• Construct a topological sort: every node is in the list after

its parent.
• Starting at the end of the list, do, for each X
revise(parent(X),X)

• Each X is left with a domain such that any value in the
remaining domain is consistent with the whole subtree
beneath it.

• After this O(n) processing, select any value at root, and
work forward selecting any consistent value. No
backtracking needed.
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But! What if you don’t have a tree?

Three strategies:
• Run the variable elimination algorithm, which runs in

exponential time in the “tree width” of the constraint graph
• Make a tree by combining some variables into

super-variables with the product of their domains and do
message-passing.

• Find a cutset: a set of variables, such that if they were
removed, the remaining (hyper)graph would be a tree.
• Do backtracking on values of the variables in the cutset
• Given an assignment to those variables, do

message-passing to try to find assignment to the rest.

We will see these algorithms again in probabilistic inference!
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Next time

• Probabilistic graphical models (factor graphs, in particular)
are a generalization of CSPs!
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