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1 Kullback-Liebler Divergence

Kullback-Leibler Divergence is a measure of how far apart two distributions are:

D(p||q) =
∑

x∈X p(x) log(p(x)q(x) ), where p and q are distributions defined on

the same domain.

1.1

Compute D(p||q) in the distributions below, using log base 2.
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1.2

In general, what are the minimum and maximum of D(p||q)? In what situations
do they occur?

2 Kalman Filtering

2.1

When using a Kalman filter, if we want to recover the maximum likelihood
trajectory, can we discard the history of observations and just record the most
likely states while filtering? Explain.

2.2

Consider three species U,V,W that grow independently of each other, exponen-
tially with growth rates: U grows 2% per hour, V grows 6% per hour, and W
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grows 11% per hour. The goal is to estimate the initial size of each population
based on the measurements of total population. Let xU (t) denote the popula-
tion size of species U after t hours, for t = 0, 1, · · ·, and similarly for xV (t) and
xW (t), so that

xU (t+ 1) = 1.02xU (t) , xV (t+ 1) = 1.06xV (t), xW (t+ 1) = 1.11xW (t).

The total population measurements are y(t) = xU (t) + xV (t) + xW (t) + v(t),
where v(t) are IID, N (0, 0.36).
The prior information is that xU (0), xV (0), xW (0) are IID N (6, 2) (ignore that
the initial populations can be negative.).

How do you formulate this problem as a Kalman filtering problem by providing
A,H,W,R?

3 Importance Sampling

Consider the probability distribution with density
p(x, y) ∝ f(x, y) = e−

1
2 (x

2+y2+x2y2+cos(x+.1y)+1). Describe an algorithm
using importance sampling to obtain samples from this distribution.

4 Particle Filtering

This is a coding problem to illustrate that particle filtering is biased for finite
sample sizes.

Consider a world with four possible robot locations X = {x1, x2, x3, x4}.
Initially, we draw N samples uniformly with replacement from the locations.
Let Y be a binary sensor variable characterized by the following conditional
probabilities:

p(y|x1) = 0.8 = 1− p(¬y|x1) (1)

p(y|x2) = 0.4 = 1− p(¬y|x2) (2)

p(y|x3) = 0.1 = 1− p(¬y|x3) (3)

p(y|x4) = 0.1 = 1− p(¬y|x4) (4)

Particle filtering uses these probabilities to generate particle weights, which are
subsequently normalized and used in the resampling process. For simplicity, let
us assume we only generate one new sample in the resampling process, regardless
of the initial number of samples N. This sample might correspond to any of the
four locations X. Thus, the sampling process defines a probability distribution
over X.
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4.1

What is the resulting probability distribution over X for the new sample, for
N = 1, 2, 4, 8?

4.2

What is the KL divergence between the distributions in 4.1 and the true pos-
terior? Observe that particle filtering is biased for finite sample sizes. Describe
how particle filtering is biased, what problems it may cause, and how it changes
with N .1

12.2, 3, 4 contain parts of problems taken from CS 287.
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