
L06: First-order Logic Proof

AIMA4e: Chapter 7.5, 9.1, 9.2, 9.5
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What you should know after this lecture

• First-order resolution theorem proving
• Forward-chaining and Prolog (basic ideas)
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Reasoning about object-based, open-world,
partially-specified world states

Factored states
Boolean-valued factors
Objects as indices
Infinite domains
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Syntactic proof

Recall, a proof procedure takes two sentences, α and β, and tells you
whether it can prove β from α:

α ` β

Proof procedure is
• sound iff for all α,β, if α ` β then α |= β

• complete iff for all α,β, if α |= β then α ` β

We have looked at proof procedures that operate via enumerating
models. But that is incomplete and/or inefficient in many cases.
So, we will look at purely syntactic proof, that operates entirely on
logical sentences.
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One proof strategy: resolution refutation

To prove α |= β:
• Write α as one or more premises
• Inference rules tell you what you can add to your proof given

what you already have. Logic is monotonic.
• When the rules have allowed you to write down β, then you’re

done.
Proof by refutation:
• To prove α |= β

• Instead show that α∧ ¬β |= False
Inference rules:
• Lots of interesting proof systems (sets of inference rules)
• We would like one that is sound and complete:
(α ` β) ≡ (α |= β)

• Refutation using the resolution inference rule is sound and
complete!!

6.0411/16.420 Fall 2023 5



Propositional resolution: reminder

General inference rule form: If you have α and β written down in
your proof, you can now write γ.

α β
γ

Modus Ponens:
P ⇒ Q P

Q

Propositional Resolution:

(P ∨Q1 ∨ . . . ,∨Qn) (¬P ∨ R1 ∨ . . . ∨ Rm)

(Q1 ∨ . . . ∨Qn ∨ R1 ∨ . . . ∨ Rm)
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Clausal form

Resolution requires sentences in first-order clausal form.
1. Rename variables so that they are all distinct.
2. Convert implications into disjunctions.
3. Push negations all the way in, using FO DeMorgan:

¬∃x.α ≡ ∀x.¬α and ¬∀x.α ≡ ∃x.¬α
4. Move all quantifiers to the front, maintaining their order.
5. Replace every existentially quantified variable with a Skolem

function of any universally quantified variables that come before
it.

6. Drop the universal quantifiers.
7. Convert to CNF.
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Clausal form practice

Every dog has its day.

∀x.Dog(x)⇒ ∃y.Day(y)∧Has(x,y)
∀x.¬Dog(x)∨ ∃y.Day(y)∧Has(x,y)
∀x.∃y.¬Dog(x)∨ (Day(y)∧Has(x,y))
∀x.¬Dog(x)∨ (Day(f1(x))∧Has(x, f1(x)))
¬Dog(x)∨ (Day(f1(x))∧Has(x, f1(x)))

(¬Dog(x)∨Day(f1(x)))∧ (¬Dog(x)∨Has(x, f1(x)))

There is at least one dog! There are no days.
∃x.Dog(x) ¬∃x.Day(x)
Dog(f2) ∀x.¬Day(x)

¬Day(x)
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Unification: matching literals
Returns substitution: {v1/t1, . . . , vk/tk} ; variables vi terms ti. The
most general substitution that makes α and β equal.

unify(α,β, θ)
if θ =’fail’ return ’fail’
if α = β return θ
if is-var(α) return unify-var(α,β, θ)
if is-var(β) return unify-var(β,α, θ)
if struct(α) and struct(β):

return unify(α[1 :],β[1 :],unify(α[0],β[0], θ))
else return ’fail’

unify-var(α,β, θ)
if {α/γ} ∈ θ return unify(γ,β, θ)
if {β/γ} ∈ θ return unify(γ,α, θ)
if occurs(α,β) return ’fail’
else return θ ∪ {α/β}
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Unification examples

α β θ

A(B,C) A(x,y) {x/B,y/C}

A(x, f(D, x)) A(E, f(D,y)) {x/E,y/E}

A(x,y) A(f(C,y), z) {x/f(C,y),y/z}

P(A, x, f(g(y))) P(y, f(z), f(z)), {y/A, x/f(z), z/g(y)}

P(x,g(f(A)), f(x)) P(f(y), z,y) fail

P(x, f(y)) P(z,g(w)) fail

P(x) Q(x) fail
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Resolution!

(l1 ∨ . . . ∨ ln) (m1 ∨ . . . ∨mk)

subst(θ, l2 ∨ . . . ∨ ln ∨m2 ∨ . . . ∨mk)

where unify(l1,¬m1) = θ.

Plus one more trick called factoring: basically, internal unification.

Theorem: Resolution plus factoring is refutation complete.

If you have equality, you need one more trick: paramodulation.
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Dog days

Do these two sentences

∀x.Dog(x)⇒ ∃y.Day(y)∧Has(x,y)
∃x.Dog(x)

entail

∃x.Day(x)
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Prove it!

Write down α and ¬β in clausal form. Try to prove False.

1. ¬Dog(x)∨Day(f1(x))

2. ¬Dog(x)∨Has(x, f1(x))
3. Dog(f2)
4. ¬Day(x)

5. Day(f1(f2)) 1, 3 {x/f2}

6. False 4, 5 {x/f1(f2)}

So, yes, if there’s a dog, there’s a day!
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Horn clauses

A Horn clause is a clause (disjunction of literals) with exactly one
positive literal. Looks like

α∧ β∧ γ⇒ δ

Datalog: Horn clauses with no function symbols. More efficient
inference. Decidable.

Prolog: Horn clauses. Depth-first backward chaining. Basis of logic
programming which then adds extra tricks for handling negation,
equality, and even side-effects.
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Completeness and decidability

Goedel’s Completeness Theorem: There exists a complete proof
system for FOL.

Robinson’s Completeness Theorem: Resolution is a refutation
complete proof system for FOL.

FOL is semi-decidable: if α |= β then eventually resolution refutation
will find a contradiction. But if not, it might run forever!

Goedel’s First Incompleteness Theorem: There is no consistent,
complete proof system for FOL with arithmetic (+ and ×).

Arithmetic allows you to construct code-names for sentences within
the logic, so that P = ”P is not provable”. Then
• If P is true: P is not provable (incomplete)
• If P is false: P is provable (inconsistent)
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Next time

• Connections to learning!
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