
L19 – Solving POMDPs Offline

AIMA 17.5, KAlg 20.5-6; 21.4-5
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What you should know after this lecture

• How to specify a full POMDP policy
• What an α-vector is
• How to use value iteration to compute a value function
• Point-based value iteration methods find policy

concentrated on belief space reachable under optimal
policy

• New online belief-space planning methods can be smarter
than expectimax and work in complicated domains
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Recall POMDP definitions
MDP with added observation process
• MDP has

– a set of states S

– a set of actions A

– transition model
T(s,a, s ′) = P(St+1 = s ′ | St = s,At = a)

– reward function R : S×A 7→ R
– discount factor γ (and possibly horizon T)

• POMDP adds

– a set of observations O

– observation model
O(s ′,a,o) = P(Ot+1 = o | At = a,St+1 = s ′)

• optionally

– an initial distribution over states, b0 = P(s0)6.0411/16.420 Fall 2023 3



Recall Bayes filter belief update

Given previous belief b, action a and observation o, what is the
new belief b ′ = bf(b,a,o)?

bf(b,a,o)(s ′) = P(St+1 = s ′ | At = a,Ot+1 = o,Bt = b)

=
1
η
P(Ot+1 = o | St+1 = s ′,At = a,Bt = b)

P(St+1 = s ′ | Bt = b,At = a)

=
1
η
O(s ′,a,o)

∑
s

P(St+1 = s ′ | Bt = b,At = a,St = s)

P(St = s | Bt = b,At = a)

=
1
η
O(s ′,a,o)

∑
s

T(s,a, s ′)b(s)

where η = P(o | a,b) =
∑
s̃O(s̃,a,o)

∑
s T(s,a, s̃)b(s)
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Value of a policy tree: α vector
Let’s start by computing the value of executing a policy tree π
in a known starting state s: Vπ(s).
• Base case when π is single node (H = 1):

Vπ(s) = R(s,π.a)

• Recursive case: depending on what state s ′ we transition
to and what observation we get (which depends on the
state), we will execute one of our subtrees (π(o)) in s ′:

Vπ(s) = R(s,π.a)+γ
∑
s ′

T(s,π.a, s ′)
∑
o

O(s ′,π.a,o)Vπ(o)(s ′)

Let
απ =

[
Vπ(s1), . . . ,Vπ(s|S|)

]
Then value at a belief is

Vπ(b) =
∑
s

b(s)Vπ(s) = b · απ
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Infinite-horizon discounted case

• Optimal value function is convex
• It can be piecewise linear or curved! Curve can arise in the

limit of infinitely many pieces.
• Value iteration algorithm still works, iteratively computing

sets of α vectors.
• Terminate when the change in the maximum difference

between subsequent value functions becomes small.
• Cool (advanced topic): if the optimal value function has

finitely many pieces, then there is a finite-state machine
controller that is optimal!
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POMDP “backup”

What is the value, at belief state b, of taking action a and then,
for each o ∈ O, if we get observation o, continuing with a policy
whose value is αo?

Va(b) =

(∑
s

b(s)R(s,a)

)
+ γ

∑
o

P(o | b,a)αo · bf(b, a, o)

=

(∑
s

b(s)R(s,a)

)
+ γ

∑
o

P(o | b,a)
∑
s′

(αo(s
′)bf(b, a, o)(s ′))

=

(∑
s

b(s)R(s,a)

)
+ γ

∑
o

P(o | b,a)
∑
s′

αo(s
′)
O(s ′,a,o)

∑
s T(s,a, s ′)b(s)

P(o | b,a)

=
∑
s

b(s)

(
R(s,a) + γ

∑
o

∑
s′

αo(s
′)O(s ′,a,o)T(s,a, s ′)

)
=b · α ′

We get a new alpha vector! Backup(a, [α1, . . . ,α|O|]) = α
′
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POMDP Value Iteration

POMDP-VI(S,A, T ,R,O,O,γ)

1 Γ0 = {R(·,a1),R(·,a2), . . . ,R(·,a|A|)} // H=1 α vectors
2 t = 1; ∆ = ∞
3 while ∆ > ε // Stop when max change in value funs is < ε
4 Γt = { }

5 for a ∈ A // Try all combinations of subtrees
6 for (α1, . . . ,α|O|) ∈ combinations(Γt−1, |O|)
7 α = Backup(a, [α1, . . . ,α|O|])
8 Γt = Γt ∪ α
9 // Ideally, prune out dominated α from Γt

10 ∆ = maxb ((maxαt∈Γt αt · b) − (maxαt−1∈Γt−1 αt−1 · b))
11 t = t+ 1
12 return Γt
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Variations on value iteration

• Guaranteed to converge to optimum but can be very slow
because there may be many tiny little “facets” to the value
function

• Idea: sample specific points in belief space to control
where we spend our computational / approximation effort.
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Point-based value iteration
Point-based backup computes new α vector that is guaranteed
to be an improvement at b (and probably elsewhere).

pb-backup(POMDP, Γ ,b)
1 For a ∈ A

2 For o ∈ O

3 αa,o = argmaxα∈Γ α · bf(b,a,o)
4 αa = backup(POMDP,a, [αa,1, . . . ,αa,|O|])

5 return argmaxa αa · b

Randomly sampling b will converge to optimal V but slow.

PBVI(POMDP)

1 Γ = {R(·,a1),R(·,a2), . . . ,R(·,a|A|)}
2 while not tired
3 b = sample-b(Γ)
4 Γ = Γ ∪ {pb-backup(POMDP, Γ ,b)}
5 return Γ6.0411/16.420 Fall 2023 10



SARSOP
Idea: Use b0 and only try to estimate V well on belief states
reachable via optimal policy. VΓ is a lower bound on V∗.

sarsop(POMDP,b0, ε)

1 Γ = {R(·,a1),R(·,a2), . . . ,R(·,a|A|)}
2 Initialize upper bound Vup (e.g. with Qmdp)
3 Initialize partial expectimax tree T with root b0
4 while |VΓ (b0) − Vup(b0)| > ε
5 b1, . . . ,bk = sample-path(Γ , T)
6 For bi ∈ b1, . . .bk
7 Γ = Γ ∪ {pb-backup(Γ ,bi)}
8 Update Vup at bi
9 Update T(bi)

10 prune(Γ)
11 return Γ

Hanna Kurniawati, David Hsu, Wee Sun Lee, SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces.6.0411/16.420 Fall 2023 11



SARSOP sampling: intuition only

To sample a path, start at root of T and generate a path. At a
node b
• Select a that maximizes upper bound Qup(b,a)
• Select o that maximizes |Vup(bf(b,a,o)) − VΓ (bf(b,a,o))|

We try to stay in high-value parts of the state space and to
sample in places where our bounds are far apart.
Terminate a sample trajectory if the difference between upper
and lower bounds is such that it will have little effect on the gap
at b0.
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Modern online solution methods

We looked at an approximate online solution method: most
likely observation. Plan under assumption of MLO, replan
when we get a different observation.
MLO can be bad when there’s a possible very bad outcome of
an action that is not highly likely. It will not be “revealed” by
the MLO and we will ignore the downside risk.
Can also do expectimax or sparse sampling on the belief MDP.
MCTS offers more focused search:
• POMCP algorithm (Silver et al): labels nodes with o,a

histories rather than beliefs — allows approximate belief
representations such as particle sets

• DESPOT algorithm (Ye et al): Uses cleverer sampling
(some ideas from SARSOP) and variance reduction
techniques to be more efficient than POMCP
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Next time

• Real RL is a POMDP!
• We’ll start with Bandit problems
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