
L17: Approximate off-line MDP methods

KAlg: 8.1, 8.2, 8.3, 8.6, 8.7

6.0411/16.420 Fall 2023 1

What you should know after this lecture

• How to use offline methods to find policies for continuous-space
MDPs

• Some ideas about handling continuous-action MDPS
• Relationship to reinforcement learning

6.0411/16.420 Fall 2023 2

Probabilistic sequential decision-making

Probabilistic transitions
Atomic, discrete states
Full observability
Solution is a policy

• Agent can observe current state completely and correctly
• World dynamics are probabilistic and known to the agent
• Agent selects actions to maximize expected summed rewards

over time
• Agent plans on-line to select next action based on current state

(but still potentially thinking about a longer horizon)

6.0411/16.420 Fall 2023 3

Recall: Value iteration

ValueIteration(S,A, T ,R,γ, ε)
1 Q(s,a) = 0 for s ∈ S, a ∈ A

2 while True:
3 for s ∈ S, a ∈ A:
4 Qnew(s,a) =

∑
s′ P(s

′ | s,a) [R(s,a, s ′) + γmaxa′ Q(s ′,a ′)]
5 if |Q−Qnew| < ε:
6 return Qnew
7 Q = Qnew

6.0411/16.420 Fall 2023 4

Continuous state-space MDPs

• There is no exact general-purpose algorithm.
• This problem (with a known model) is actually what most

current applications of reinforcement-learning are trying to
solve!1

• There is a large collection of RL-like methods for addressing
continuous MDPs, including
• Value-iteration-like methods: fitted Q, approximate value iteration,

approximate dynamic programming, neuro-dynamic
programming, deep Q learning, ...

• Policy-iteration-like methods: actor-critic RL methods represent
both value function and policy; can apply to continuous action
spaces as well.

• Policy gradient methods: no value function at all—just gradient
ascent in the space of expected value of executing the policy.

1RL was originally intended to be a model of how real creatures, e.g., honeybees,
learn from small amounts of experience in small spaces.6.0411/16.420 Fall 2023 5

Approximate value iteration

ApproximateVI(mdp,N, T ,k)
1 // N: number of sample states // T : number of iterations
2 // k: number of backup samples
3 S = sampleStates(mdp,N)
4 Q = {a : Fit(S, zeros(N)}
5 for t ∈ 1..T :
6 for a ∈ mdp.A:
7 Y = [backup(s,a,Q, mdp,k) for s ∈ S]
8 Q[a] = Fit(S, Y)
9 return Q

Becomes exact value iteration when:
• mdp.S = S is discrete
• Q[a].predict(si) = yi : we remember our training data
• backup(s,a,Q, mdp) =∑

s′∈mdp.S mdp.T(s,a, s ′) [mdp.R(s,a, s ′) + γmaxa′ Q[a ′].predict(s ′)]
6.0411/16.420 Fall 2023 6

Approximate backup

When there are a large or infinite number of s ′ such that
P(s ′ | s,a) > 0 we can’t compute an exact backup.
• So, we sample k possible s ′ (can also sample r):

backup(s,a,Q, mdp) =
1
k

∑
{(s′,r)∼TR(s,a)}k

r+ γQ[a].predict(s ′)

• How to pick k? Computation time vs variance trade-off.
• Just need a generative model mdp.TR that we can call to get

samples (but not explicit T)

6.0411/16.420 Fall 2023 7

Function approximation
Assume a function-approximation module with interface:
• f = Fit(X, Y) : takes a sequence of states, X, and a sequence of

values Y and returns the state of an approximator
• f.predict(x) : approximator takes a query state x and returns a

predicted value
KAlg chapter 8 talks about a lot of different ones. My favorite is
kernel smoothing (also known as kernel regression):
• fit(X, Y) just remembers X and Y
• Prediction is weighted combination of all the y values:

f.predict(x) =
∑N
i=1 k(xi, x)yi∑N
i=1 k(xi, x)

where (if σ is big, this is average y; if small, nearest neighbor)

k(x1, x2) = exp
(
−
‖x1 − x2‖2

2σ2

)
6.0411/16.420 Fall 2023 8

Neural networks!

Another way to meet this spec is a neural net
• fit(X, Y) does supervised regression (be sure not to have any

output non-linearity) and returns weights θ
• θ.predict(x) is just a forward pass on the trained network

To be incremental or not? We can choose:
• To re-initialize the network in each iteration of approximate

value iteration.
• To train, in each iteration, starting from the previousQ networks’

values.

6.0411/16.420 Fall 2023 9

Sampling states

In a low-dimensional problem, it is reasonable for sampleStates to
generate an evenly-spaced grid of samples.
In high-dimensional problems, this is intractable. So:
• If the horizon is long and the reward is “sparse” (doesn’t give

you any local signals about which parts of the space are better)
then there’s nothing you can do.

• Otherwise, take the RL connection more seriously:
• Assume an initial state or initial state distribution
• Let πQ be the “greedy” policy based on the current Q values
• Gather new S on each iteration of avi, by starting at an initial state,

and executing πQ, but with some “exploration”, like:
• with probability ε execute a random action instead of πQ
• try to take actions that will lead to previously un-visited parts of the

state-space

• Combine the states visited in this process with previous S (with
some strategy for keeping S from growing too large, but also
avoiding oscillations—replay buffer.)

6.0411/16.420 Fall 2023 10

Q Learning in simulation

This becomes Q-learning when you:
• Use your MDP model to build a simulator.
• Choose actions in a way that is mostly greedy wrt Q
• Update your Q values a small amount after each interaction

SimulatedQ(mdp, T)
1 s = mdp.s0
2 Q = {a : Fit(S, zeros(N)}
3 for t ∈ 1..T :
4 a = epsilonGreedy(s,Q)
5 s ′, r = mdp.TR(s,a)
6 y = r+ mdp.γQ[a].predict(s ′)
7 Q[a].update(s,y) // One neural network update
8 s = s ′

9 return Q

6.0411/16.420 Fall 2023 11

Handling continuous actions

• Value-iteration style:
• Train a single function-approximator to represent Q(s,a)
• Solve a continuous optimization problem to find
πQ(s) = argmaxaQ(s,a)

• Can be difficult in practice, both because optimization is hard and
because it tends to find adversarial examples in your network. Can
add a term that constrains it to be “close” to your training
examples.

• Policy-iteration style:
• Make a policy network π and value network(s) Q
• Conceptually, alternate:

• UseQ to generate (s,a) data for supervised training of the policyπQ
• Execute learned policy to get more data for trainingQπ

• In fact, you can do both in parallel, by fiddling with learning rates,
etc.

6.0411/16.420 Fall 2023 12

Next time

• Introduction to POMDPs!

6.0411/16.420 Fall 2023 13

