L16: Markov decision processes:
exact offline solution

AIMA4e: Chapter 17.2.1-17.2.3
Kochenderfer: 7.2-7.7 (more detailed alternative to AIMA4e) and
7.8 (not covered in AIMA)

6.0411/16.420 Fall 2023



What you should know after this lecture

How to find optimal policies for MDPs!
¢ Value iteration
e Policy iteration
¢ Linear programming

¢ Linear quadratic regulators (for a class of continuous MDPs)

6.0411/16.420 Fall 2023



Probabilistic sequential decision-making

Probabilistic transitions
Atomic, discrete states
Full observability
Solution is a policy

¢ Agent can observe current state completely and correctly

World dynamics are probabilistic and known to the agent

Agent selects actions to maximize expected summed rewards
over time

Agent plans on-line to select next action based on current state
(but still potentially thinking about a longer horizon)

6.0411/16.420 Fall 2023 3



Solution strategies for MDPs

Two main categories

¢ Online action selection given current state sg via some form of
search: last lecture

¢ Offline solution to derive a complete policy 7 that can be
executed online very efficiently : this lecture

We will focus on the infinite-horizon discounted case with finite (and
non-huge) & and A. Goal will be to compute Q* or 7* for all s.

6.0411/16.420 Fall 2023 4



Recall from last time

V*(s) = m(?XZ P(s’|s,a)[R(s,a,s’) +vyV*(s)]

Q*(s,a) = ZP(SI |'s,a) {R(s, a,s’) +y max Q*(s’,a’)

Q*(s,a) = Z P(s'|s,a)[R(s,a,s’) +vyV*(s)]

V*(s) =maxQ*(s,a)

*(s) = argmax Q* (s, a)

6.0411/16.420 Fall 2023



Policy evaluation

An important sub-problem: given policy 7, what is the value of
executing it?

Vi(s) = ) P(s'|s,7m(s)) [R(s,7(s),s") +yVr(s")]

Note that:
e MDP + policy is a Markov chain
¢ Can define an iterative algorithm

PovricyEvaruarion(m, 8, A, T, R, v, €)
1 Vu(s)=0forse§
2 while True:
fors € 8:
Vinew(s) = 2o P(s" | s,7(s)) [R(s, 7(s),s") + v Vr(s')]
if [V — Vinew! < €
return Vi new

N OOl = W

Vrr = Vinew

6.0411/16.420 Fall 2023



¢ Observe that values are defined by a set of |§] linear equations in
|8| unknowns (the V,(s) values). Let

e V, be a vector of the V,; values, for each state

¢ T, be a transition matrix, where T;; = P(s; | s, 7(s;))

¢ Rbe areward vector (simplified to match standard treatment),
where R; = R(s;, 7t(si))

Then
V=R +YT7'LV7I
(I=vTA)Ve=R
Ve=(1—vT:) 'R

Unfortunately, there’s not such an easy solution for finding the
optimal value function, because the max operations make the system
non-linear.

6.0411/16.420 Fall 2023



Finding optimal policy: Stupidest possible algorithm

¢ Given finite s and a, there are finitely many policies! We could
enumerate them, but how would we decide which one is best?

¢ Because of the Markov property (future depends only on s¢),
there’s a helpful theorem

e For any MDP there exists at least one deterministic optimal
policy 7t* such that for all other policies T,

Vn* (S) 2 VT[(S)

¢ This means we don’t have to worry that some policies might be
good in some parts of the state space and others good in other
parts—there is at least one policy that’s as good as the best policy
at all states!

6.0411/16.420 Fall 2023 8



Finding optimal policy: Value iteration

Not so easy when we don’t know the policy! System of equations
isn’t linear any more (it has max operations in it.)

Vi(s)=max ) P(s'|s,a)[R(s,a,s") + ¥V (s")]

VaruelteraTioN(8, A, T, R, vy, €)

1 V(s)=0forses
2  while True:
fors € 8:
View(s) =maxq > ., P(s’|'s,a) [R(s, a,s") +yV(s')]
if |V — Vaew| < €
return Vg,
V= vnew

N OO = W

where [V3 — Vo| = max,|V4(s) — Va(s)|.

6.0411/16.420 Fall 2023



Finding optimal policy: Q-Value iteration

For acting, it is more useful to have the Q(s, a) values.
a) = Z P(s'|s,a) [R(s, a,s’) +ymaxQ*(s’,a’)
s’ af

QVavruelteraTiON(8, A, T, R,v, €)

1 Q(s,a)=0forse8, acA
2 while True:

3 fors€8,a¢€ A

4 Qnew(s,a) =3 . P(s"|s,a)[R(s,a,s’) +ymaxys Q(s’, a’)]
5 Hf]Q— Quenl < €

6 return Qnew

7 Q = Qnew

where [Q1 — Q2| = max, |Q1(s, a) — Qza(s, a)l.

6.0411/16.420 Fall 2023 10



Cool facts about value iteration

¢ Guaranteed to converge to Q*
e Max-norm error |Q — Q*| decreases monotonically per iteration
¢ Can initialize to any value

e When initialized to 0, iterations are finite-horizon value
functions.

¢ Can execute “in place” (don’t need a separate Qnew)

¢ Can randomly pick (s, a) to update, rather than doing it
systematically

¢ Serves as the basis for Q-learning

o If |Q - Qnew| < € then |Q - Q*‘ < €Y/(1 *Y)

¢ Define greedy policy with respect to value function
o (s) = argmax, Q(s, a). Thenif |Q(s,a) — Q*(s,a)l < €,
Vg — VI < 2e.

6.0411/16.420 Fall 2023



Gridworld domain?

¢ Simple grid world with a goal state with reward 1 and a bad

state with reward —100

¢ Actions move in the desired direction with probability 0.8, in one
of the perpendicular directions with probability 0.1

¢ Taking an action that would bump into a wall leaves agent where

it is.

0 . 0 -100

6.0411/E9@ampkezfrom Zico Kolter, CMU

Action = north
P=08

t

P =01«

— P=0.1




Gridworld value iteration

Running value iteration withy = 0.9

e One iteration

e Five iterations

6.0411/16.420 Fall 2023

0 0 |0.72 | 1.8
0 . 0 |-99.91
0 0 0 0
0.809|1.5982.475|3.745
0.268-0.302 -99.59
0 ]0.034]0.122]0.004




Gridworld value iteration

Running value iteration withy = 0.9

e Ten iterations

e 1000 iterations

6.0411/16.420 Fall 2023

2.686

3.5274.402|5.812

2.021

. 1.095 (-98.82

1.390

0.903]0.7380.123

5.470

6.313|7.190 | 8.669

4.802

. 3.347 (-96.67

4.161

3.6543.222 | 1.526




Gridworld value iteration

Running policy iteration with y = 0.9

¢ Resulting policy after 1000 iterations

6.0411/16.420 Fall 2023

—

—

—

f

.




Policy iteration

Actually, it usually happens that mg = 7* long before Q is close to
Q*. So doing value iteration until convergence might be too much
work. Let’s try working explicitly in the space of policies without

enumerating them all!

PovricyIteration(S, A, T, R, v, €)

1 7(s) = afors € § and an arbitrary a € A
2 while True:

3 Q=0Qx // Policy evaluation
4 ' =Tq // Greedy policy wrt Q
5 ifr=mn"

6 return 7t

7 n=nmn'

¢ Worst-case complexity is bad, but often very good in practice.

e Interesting combinations of policy and value iteration (e.g., don’t
completely solve policy evaluation step—use some iterations of

iterative policy evaluation instead.)
6.0411/16.420 Fall 2023 16



Gridworld policy iteration

Running policy iteration with y = 0.9, initialized with policy

7(s) = North

e One iteration

e Two iterations

6.0411/16.420 Fall 2023

0.418

0.884

2.331

6.367

0.367

._8I6.1 O

-105.7

-0.168

-4.641

-14.27

-85.05

5.414

6.248

7.116

8.634

4.753

-102.7

2.251

1.977

1.849

-8.701




Gridworld policy iteration

Running policy iteration with vy = 0.9, initialized with policy

7(s) = North

o Three iterations (converged)

6.0411/16.420 Fall 2023

5.470

6.313

7.190

8.669

4.803

-

-96.67

4.161

3.654

3.222

1.526




Gridworld results

¢ Approximation of value function

¢ Policy iteration: exact value function after three iterations

e Value iteration: after 100 iterations, |V — V*||2 = 7.1 x 10~*
¢ Calculation of optimal policy

¢ Policy iteration: three iterations
e Value iteration: 12 iterations

In other words, value iteration converges to optimal policy long
before it converges to correct value in this MDP (but, this property is
highly MDP-specific)

6.0411/16.420 Fall 2023 19



Policy iteration or value iteration?

e Policy iteration requires fewer iterations that value iteration, but
each iteration requires solving a linear system instead of just
applying Bellman backup.

e In practice, policy iteration is often faster, especially if the
transition probabilities are structured (e.g., sparse) to make
solution of linear system efficient.

¢ Modified policy iteration (Puterman and Shin, 1978) solves linear
system approximately, using backups very similar to value
iteration, and often performs better than either value or policy
iteration.

6.0411/16.420 Fall 2023 20



Linear programming

¢ Define variables V; for the optimal value of state i.

2V

o Subject to, for all s € |8, a € |A]

e Minimize

Vi ) Plsilsi,a) Risi,a,s5) +vV)]

6.0411/16.420 Fall 2023 21



Linear programming

¢ Why do we minimize a weighted combination of the values?
Shouldn’t we maximize value?

¢ Value functions V that satisfy the constraints are upper bounds
on the optimal value function V*

V(s) > V*(s) Vs

e Minimizing value ensures that we choose the lowest upper
bound

m\in V(s) =V*(s) Vs

Only known algorithm with worst-case time complexity polynomial
in |8] and |A|. The complexity of policy iteration has a term that
depends on 1/(1 —v).

In practice other methods are usually more efficient.

6.0411/16.420 Fall 2023 22



Linear quadratic regulator

There is no general-purpose solution method for continuous state
and action MDPs. But there’s an interesting and useful special case
when the dynamics are linear-Gaussian (like the systems we did
Kalman filtering on) and the rewards are quadratic.
o § = R™ (often called X)
o A =IR™ (often called controls )
e s'|s,a=Tss+ Tqa+ W where T, is an n x n matrix, T, is an
n x m matrix, and W is drawn from a zero-mean finite-variance
Gaussian.
e R(s,a) = s"Rgs + a"R,a where Ry is n x n and positive
semidefinite and R4 is m x m and positive definite. This
penalizes states and actions that deviate from 0. You need to

define your states s so that 0 is a desired state and actions a so
that 0 is a desired action.

6.0411/16.420 Fall 2023 23



Linear quadratic regulator: solutions

Good to know that these exist, but we won’t study them:

¢ In finite-horizon case, there is a value iteration method that finds
the exact optimal control sequence, using the dynamic Riccati

equation

e Even cooler, in the infinite-horizon (non-discounted) case, there
is a stationary optimal policy of the form a = Fs where Fis a
fixed matrix (found by solving for a fixed-point of the Riccati
equation).

¢ Even more cool, these same basic things work out in continuous
time, where s = Tgs + Tqa + W

6.0411/16.420 Fall 2023 24



Next time

¢ Approximate value and policy iteration via reinforcement
learning

6.0411/16.420 Fall 2023

25



