L13 — Continuous factored models

Barber 21.1-4; AIMA 13.2.3, 14.4
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What you should know after this lecture

Multivariate Gaussians!

Continuous and hybrid Bayes nets

Idea of Gaussian belief propagation

Kalman filtering
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Probabilistic reasoning about
partially-specified world states

Factored states
Continuous-valued factors
Exact inference

Temporal models
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Conjugate families of probability distributions

In order for exact probabilistic inference to be tractable, we
generally need for the joint and conditional distributions of
factors to be Conjuga’ce:l
e Let f(0a)(a) be the pdf of a random variable A and
f(0g)(b) be the pdf of a random variable B, where f has
some fixed parametric form and 0 specifies a particular pdf
in that family.
e Then the product of the pdfs on A and B has the form
f(0ag)(a,b) where 045 is a function of 04 and 05.

f(0a)(a) - f(08)(b) = f(6aB)(a,b)

The actual definition is more general and specifically relates a prior
distribution and an observation distribution, but this basic idea is what we
neech a1 Row3 4



Categorical distribution is conjugate family

We have been using the categorical distribution?

e O ={xq,...,xm}
e A = (9?,...,9&) GB:(G?,...,GEA)
® fA(eA)(Xt) = e? fB(eB)(Xi) = 9?

If we multiply these distributions on the same variable (e.g.
during message passing), then we get

o fap(0ap)(xi) =00B = Lot . 0P

71
where Z = Z{‘i1 o/roB

6.041MVadike the name “multinoulli” better, though! 5



Categorical distribution is conjugate for joint

Combining two categorical distributions on different variables:

° QA:{a1,...,aM} QB:{b1,...,bN}
o 0A =(07,...,08) 08 = (0B,...,08)
o fA(0M)(ai) =07 f5(0°)(bi) = 67

If we multiply these distributions on different variables (e.g.
computing the joint when A and B are independent), then we
get

e Oap =0Qa xQp

o fap(07P)(ai, bj) = 04" (ai, bj) =64 - 07
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Univariate Gaussian is conjugate family

[ ] Q e R
e 0p = (pa, 0%) 0p = (up, 03)
_ 1 1y 2
¢ fA(eA)(X) ~ Voroa exp{ 26% (X IJ-A) }
_ 1 1y 2
* fB(08)(x) = 5 exP{—55z (x —us)%}
If we multiply these distributions on the same variable (e.g.
during Bayes rule), then
® Observe that multiplying f’s yields
a5 (0A5) (x) =~ L —exp (L (x—wa) L (x— wp)?)
AB(OAB Vron 2ron 202, A 202 B

® After completing the square and some algebra, we find that

1 1
fag(0aB)(x) = mexp{—ﬁ(x — pag)?} where
HA = HAOS + oA o2 — 0% o%
- 2 2 AB — 2 2
o3 + 0% o3 + 0%

6.0411/16.420 Fall 2023 7



Multivariate Gaussian

e O =RP
e 0=(neRP, LecRP*DP) *// ¥ is positive definite
(1, D) (x) = — o exp{a (x— ) TZ " (x— )
K, 23| 2 |58 53

|Z| is the determinant; figure from Wikipedia

o Axes are eigenvectors of
z

e Axis-aligned if X is
diagonal

(x)d

e Round if X is identity
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Fun facts about the multivariate Gaussian

Let’s say our MVG has dimensions 1..D, but we are interested in
marginalizing some of them out, or conditioning some of them on
particular values. Let’s divide them into one set of dimensions

A = 1..K and another B = K + 1..D. So, we can think of the

parameters as
HA YN ZAB)
= Z:
" (MB) (ZBA RN

Marginalizing out dimensions A yields Gaussian on B with
HE =up XIg =2Ip
Conditioning on B = b yields a Gaussian on A with

Hap = HA + Iapipp(b—us) IAB = ZAA — IABIgpIBA
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Multivariate Gaussian is conjugate family

Product of MVGs:
L4 QA = ]RD QB = IRD
e 0A = (HA,ZA) O = (uB,ZB)

If we multiply these distributions on the same variable (e.g.
during Bayes rule), then we get an MVG with

e = (S3 +Z5") 7 (Talua + Zp'ue)  Zas = (T3 +Z5")
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Multivariate Gaussian is conjugate for joint

Product of MVGs on different domains
e Op =RPA Qp =RPs
* 0a = (na,ZA) 0g = (uB, ZB)
We get an MVG with dimension D = D + Dg, and

HA ZaA 0>
= Yy =
H (MB) (0 g
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Gaussian Bayesian networks

Assume the conditional probability distribution for each node
V has the form V ~ Normal(w(\)/ + WI/ . pa(V),n%,) where

® w, is a vector of real-valued weights of length number of
parents of V

. n%/ is the variance of added noise

Then the joint distribution over all variables Vi,..., Vy is
Gaussian. You can construct the distribution by induction:

e Assume the parents of node V are normally distributed
with mean up, Zp

e Then py = WC\)/ + W\T/up
. cr%/ = Tﬁ/ +wlZpw

¢ Also have to compute rest of entries in X for the joint
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Hybrid networks

Some standard cases:

e Discrete parent of Gaussian nodes: mixture-of-Gaussians
models

¢ Continuous parent of discrete node: apply sigmoid or
softmax to get categorical distribution

6.0411/16.420 Fall 2023

13



Gaussian Factor graphs

Make a factor graph in which all potentials are described using
i, Z over their neighbor variables.

e Joint distribution (suitably normalized) is a multivariate
Gaussian
e If the graph is a tree, you can do belief propgation, using

exactly the same algorithmic structure as sum-product, but
using operations on Gaussian-PDF-form functions:

e Multiply
¢ Marginalize
e It turns out that it’s usually easier to do it with messages
representing the same information as p, & but in a different
(“canonical”) form. We're not going to look at it in detail.
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Linear Gaussian Hidden Markov Models

Process step: Xt = AXt_1 + Wi_1{
Measurement step: yt = Hx¢ + v¢

where

st GORtiwous time version possible, but hairy

x¢ — state vector at time step t, a random process

y+ — observation received at time step t, a random process
w — process noise ~ N(0, W)

vi{ — measurement noise ~ N(0, R)

A — process model (Note: this is not the same kind of
matrix as A in the HMM, although it plays a similar role.)
H — measurement model

7t — initial distribution N(xg, Qqjo)

We are ignoring the control term Bu¢_1 (ignore this
comment if it doesn’t worry you)

A and H are assumed known and constant, but could vary
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Filtering

Want to compute P(x¢ | yo:t)-

e We know it’s Gaussian because this is a linear Gaussian
Bayesian network!

e So P(x¢ | yo:t) = :N()A(tlts Qtlt)

e Assume we know parameters of distribution at previous
step X¢jt—1, Q¢jt—1. Note that 7t is our base case.

e Recursively compute

1. Transition update finds

P(x¢ | y0:t71) = N(it|t71 , Qt\tq)

2. Observation update finds

P(xq | YO:t) = N(’A(t\ty Qt\t)

e Can be understood as sum-product on associated Gaussian
factor 0%raph
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Transition update

Current belief P(x¢—1 [ yo:t—1) = N(X¢—1j¢t—1, Qe—1/t—1)

Transition x; = Ax{_1 + wy where wy ~ N(0, W)

Construct the joint on x¢ 4 and x:

"= ( )’\(}71\’(71 > 5 _ < Q11 Qtf1\t—1¢—r )
AXt—1)t—1 AQi—1jt—1 AQu 1A +W
Marginalize out x¢_4
P(x¢ | Uo:t—1) = N(it|t71 ) Qt|t71)
’A(tlt—1 = A7A‘t—1|t—1
Q-1 =AQe 1 1AT + W

Note that Var[A + B] = Var[A] + Var[B] when A and B are independent. Here

x¢ — 1 and wy are independent. Also Var[CA + c], where C and c are constant, is
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Observation update

e Current belief P(x¢ | yo:t—1) = N(X¢je—1, Qee—1)
e Observation model yy = Hx¢ + v¢ where v¢ ~ N(0, R)

¢ Construct the joint on x¢ and y

"= ( Xttt ) s _ ( Quje—1 Que—1HT >
HX¢ 1 HQgt—1 HQue_1H' +R
¢ Condition on actual observation y: =yt

P(xt [yo:t) = N(’A(ﬂt, Qt\t)
—1
Qe = Qee—1 — Qtlt—1HT (HQtlt—1HT + R) HQ¢¢—1
N ~ —1 ~
Xejt = Xej—1 T Qje—1 HT (HQt|t—1 HT + R) (Yt — th\t—1)
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Observation update: simplified
—1

Define Kalman gain K¢ = Qy;_1H" (HQy¢_1H" +R)
Use (tricky!) matrix algebra-fu to get useful relationships:
Kt - QtltHTR_1
Qtlt = Qt|t—1 - KtHQt|t—1
Xeje = X1 + Ke (Yo — HXgpeq)
Call y¢ — HX|t_1 the innovation: how surprising is our
observation?
K¢ maps y; into an opinion about x;: Big if observations
are accurate and prior on x; is weak.
Intuition-building rewrite:
Xejp = (I = KeH) X1 + Keye

Some important properties of the Kalman filter:

® Transition adds uncertainty: Q1 is always “larger” than Q_1¢_1
® (Observation reduces uncertainty: Qy is always “smaller” than Q|1
19
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Kalman smoothing

Just as in discrete HMMs, we can run a similar
belief-propagation pass backward to compute P(x; | yo.T)

In Gaussian systems, the max of the individual marginals is the
max of the joint!!!
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Handling non-linear and non-Gaussian systems

e Extended / unscented Kalman filter

e Particle filter
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