
L13 – Continuous factored models

Barber 21.1–4; AIMA 13.2.3, 14.4
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What you should know after this lecture

• Multivariate Gaussians!
• Continuous and hybrid Bayes nets
• Idea of Gaussian belief propagation
• Kalman filtering
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Probabilistic reasoning about
partially-specified world states

Factored states
Continuous-valued factors
Exact inference
Temporal models
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Conjugate families of probability distributions

In order for exact probabilistic inference to be tractable, we
generally need for the joint and conditional distributions of
factors to be conjugate:1

• Let f(θA)(a) be the pdf of a random variable A and
f(θB)(b) be the pdf of a random variable B, where f has
some fixed parametric form and θ specifies a particular pdf
in that family.

• Then the product of the pdfs on A and B has the form
f(θAB)(a,b) where θAB is a function of θA and θB.

f(θA)(a) · f(θB)(b) = f(θAB)(a,b)

1The actual definition is more general and specifically relates a prior
distribution and an observation distribution, but this basic idea is what we
need for now.6.0411/16.420 Fall 2023 4



Categorical distribution is conjugate family

We have been using the categorical distribution2

• Ω = {x1, . . . , xM}

• θA = (θA1 , . . . , θAM) θB = (θB1 , . . . , θBM)

• fA(θ
A)(xi) = θ

A
i fB(θ

B)(xi) = θ
B
i

If we multiply these distributions on the same variable (e.g.
during message passing), then we get
• fAB(θAB)(xi) = θ

AB
i = 1

Zθ
A
i · θBi

where Z =
∑M
i=1 θ

A
i θ
B
i

2We like the name “multinoulli” better, though!6.0411/16.420 Fall 2023 5



Categorical distribution is conjugate for joint

Combining two categorical distributions on different variables:
• ΩA = {a1, . . . ,aM} ΩB = {b1, . . . ,bN}
• θA = (θA1 , . . . , θAM) θB = (θB1 , . . . , θBN)
• fA(θ

A)(ai) = θ
A
i fB(θ

B)(bi) = θ
B
i

If we multiply these distributions on different variables (e.g.
computing the joint when A and B are independent), then we
get
• ΩAB = ΩA ×ΩB
• fAB(θ

AB)(ai,bj) = θAB(ai,bj) = θAi · θBj
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Univariate Gaussian is conjugate family

• Ω = R

• θA = (µA,σ2
A) θB = (µB,σ2

B)

• fA(θA)(x) =
1√

2πσA
exp {− 1

2σ2
A

(x− µA)
2}

• fB(θB)(x) =
1√

2πσB
exp {− 1

2σ2
B

(x− µB)
2}

If we multiply these distributions on the same variable (e.g.
during Bayes rule), then
• Observe that multiplying f’s yields

fAB(θAB)(x) =
1√

2πσA

1√
2πσB

exp {−
1

2σ2
A

(x−µA)
2 −

1
2σ2
B

(x−µB)
2}

• After completing the square and some algebra, we find that
fAB(θAB)(x) = 1√

2πσAB
exp {− 1

2σ2
AB

(x−µAB)
2} where

µAB =
µAσ

2
B +µBσ

2
A

σ2
A +σ2

B

σ2
AB =

σ2
Aσ

2
B

σ2
A +σ2

B
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Multivariate Gaussian

• Ω = RD

• θ = (µ ∈ RD,Σ ∈ RD×D) `// Σ is positive definite

f(µ,Σ)(x) =
1√

2πD|Σ|
exp {−

1
2
(x− µ)TΣ−1(x− µ)}

|Σ| is the determinant; figure from Wikipedia

• Axes are eigenvectors of
Σ

• Axis-aligned if Σ is
diagonal

• Round if Σ is identity
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Fun facts about the multivariate Gaussian
Let’s say our MVG has dimensions 1..D, but we are interested in
marginalizing some of them out, or conditioning some of them on
particular values. Let’s divide them into one set of dimensions
A = 1..K and another B = K+ 1..D. So, we can think of the
parameters as

µ =

(
µA
µB

)
Σ =

(
ΣAA ΣAB
ΣBA ΣBB

)
Marginalizing out dimensions A yields Gaussian on Bwith

µmB = µB ΣmB = ΣB

Conditioning on B = b yields a Gaussian on A with

µcA|B = µA + ΣABΣ
−1
BB(b− µB) ΣcA|B = ΣAA − ΣABΣ

−1
BBΣBA
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Multivariate Gaussian is conjugate family

Product of MVGs:

• ΩA = RD ΩB = RD

• θA = (µA,ΣA) θB = (µB,ΣB)

If we multiply these distributions on the same variable (e.g.
during Bayes rule), then we get an MVG with

µAB =
(
Σ−1
A + Σ−1

B

)−1 (
Σ−1
A µA + Σ−1

B µB
)

ΣAB =
(
Σ−1
A + Σ−1

B

)−1
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Multivariate Gaussian is conjugate for joint

Product of MVGs on different domains

• ΩA = RDA ΩB = RDB

• θA = (µA,ΣA) θB = (µB,ΣB)

We get an MVG with dimension D = DA +DB, and

µ =

(
µA
µB

)
Σ =

(
ΣA 0
0 ΣB

)
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Gaussian Bayesian networks

Assume the conditional probability distribution for each node
V has the form V ∼ Normal(w0

V +wTV · pa(V),η2
V) where

• wv is a vector of real-valued weights of length number of
parents of V

• η2
V is the variance of added noise

Then the joint distribution over all variables V1, . . . ,VN is
Gaussian. You can construct the distribution by induction:
• Assume the parents of node V are normally distributed

with mean µP,ΣP
• Then µV = w0

V +WT
VµP

• σ2
V = η2

V +wTΣPw

• Also have to compute rest of entries in Σ for the joint
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Hybrid networks

Some standard cases:
• Discrete parent of Gaussian nodes: mixture-of-Gaussians

models
• Continuous parent of discrete node: apply sigmoid or

softmax to get categorical distribution
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Gaussian Factor graphs

Make a factor graph in which all potentials are described using
µ,Σ over their neighbor variables.
• Joint distribution (suitably normalized) is a multivariate

Gaussian
• If the graph is a tree, you can do belief propgation, using

exactly the same algorithmic structure as sum-product, but
using operations on Gaussian-PDF-form functions:
• Multiply
• Marginalize

• It turns out that it’s usually easier to do it with messages
representing the same information as µ,Σ but in a different
(“canonical”) form. We’re not going to look at it in detail.

6.0411/16.420 Fall 2023 14



Linear Gaussian Hidden Markov Models

Process step: xt = Axt−1 + wt−1

Measurement step: yt = Hxt + vt

where
• xt — state vector at time step t, a random process
• yt — observation received at time step t, a random process
• wt — process noise ∼ N(0,W)
• vt — measurement noise ∼ N(0,R)
• A— process model (Note: this is not the same kind of

matrix as A in the HMM, although it plays a similar role.)
• H— measurement model
• π— initial distribution N(x0,Q0|0)
• We are ignoring the control term But−1 (ignore this

comment if it doesn’t worry you)
• A and H are assumed known and constant, but could vary
• Continuous time version possible, but hairy
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Filtering
Want to compute P(xt | y0:t).
• We know it’s Gaussian because this is a linear Gaussian

Bayesian network!
• So P(xt | y0:t) = N(x̂t|t,Qt|t)
• Assume we know parameters of distribution at previous

step x̂t|t−1,Qt|t−1. Note that π is our base case.
• Recursively compute

1. Transition update finds

P(xt | y0:t−1) = N(x̂t|t−1,Qt|t−1)

2. Observation update finds

P(xt | y0:t) = N(x̂t|t,Qt|t)

• Can be understood as sum-product on associated Gaussian
factor graph
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Transition update

• Current belief P(xt−1 | y0:t−1) = N(x̂t−1|t−1,Qt−1|t−1)

• Transition xt = Axt−1 + wt where wt ∼ N(0,W)

• Construct the joint on xt−1 and xt:

µ =

(
x̂t−1|t−1
Ax̂t−1|t−1

)
Σ =

(
Qt−1|t−1 Qt−1|t−1A

T

AQt−1|t−1 AQt−1|t−1A
T +W

)
• Marginalize out xt−1

P(xt | y0:t−1) = N(x̂t|t−1,Qt|t−1)

x̂t|t−1 = Ax̂t−1|t−1

Qt|t−1 = AQt−1|t−1A
T +W

Note that Var[A+B] = Var[A] + Var[B] whenA and B are independent. Here

xt − 1 and wt are independent. Also Var[CA+ c], whereC and c are constant, is

CVar[A]CT .6.0411/16.420 Fall 2023 17



Observation update

• Current belief P(xt | y0:t−1) = N(x̂t|t−1,Qt|t−1)

• Observation model yt = Hxt + vt where vt ∼ N(0,R)
• Construct the joint on xt and yt

µ =

(
x̂t|t−1
Hx̂t|t−1

)
Σ =

(
Qt|t−1 Qt|t−1H

T

HQt|t−1 HQt|t−1H
T + R

)
• Condition on actual observation yt = yt

P(xt | y0:t) = N(x̂t|t,Qt|t)

Qt|t = Qt|t−1 −Qt|t−1H
T
(
HQt|t−1H

T + R
)−1

HQt|t−1

x̂t|t = x̂t|t−1 +Qt|t−1H
T
(
HQt|t−1H

T + R
)−1 (

yt −Hx̂t|t−1
)
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Observation update: simplified

• Define Kalman gain Kt = Qt|t−1H
T
(
HQt|t−1H

T + R
)−1.

• Use (tricky!) matrix algebra-fu to get useful relationships:

Kt = Qt|tH
TR−1

Qt|t = Qt|t−1 − KtHQt|t−1

x̂t|t = x̂t|t−1 + Kt
(
yt −Hx̂t|t−1

)
• Call yt −Hx̂t|t−1 the innovation: how surprising is our

observation?
• Kt maps yt into an opinion about xt: Big if observations

are accurate and prior on xt is weak.
• Intuition-building rewrite:

x̂t|t = (I− KtH) x̂t|t−1 + Ktyt

Some important properties of the Kalman filter:
• Transition adds uncertainty: Qt|t−1 is always “larger” than Qt−1|t−1

• Observation reduces uncertainty: Qt|t is always “smaller” than Qt|t−1
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Kalman smoothing

Just as in discrete HMMs, we can run a similar
belief-propagation pass backward to compute P(xt | y0:T )

In Gaussian systems, the max of the individual marginals is the
max of the joint!!!
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Handling non-linear and non-Gaussian systems

• Extended / unscented Kalman filter
• Particle filter
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