
MIT 6.867 Fall 2016 11

µα(xk) =
∑
xk−1

φk−1,k(xk−1, xk)

(∑
xk−2

· · ·

)
=
∑
xk−1

φk−1,k(xk−1, xk) · µα(xk−1)

The base case is
µα(x1) = 1 .

Now, for the backward messages: Think of these as ex-
pressing a collective
opinion, based on all
the nodes with indices
higher than k, about the
values of xk.

Think of these as ex-
pressing a collective
opinion, based on all
the nodes with indices
higher than k, about the
values of xk.

µβ(xk) =
∑
xk+1

φk,k+1(xk, xk+1)

(∑
xk+2

· · ·

)
=
∑
xk+1

φk,k+1(xk, xk+1) · µβ(xk+1)

The base case is
µβ(xn) = 1 .

One pass of “message passing” in each direction along the whole chain yields all marginal
distributions.

If we have observed variable Xj to have value vj, then we

• Add one more potential

φobs(xj) =

{
1 if xj = vj
0 otherwise

• Multiply it into φj−1,j and φj,j+1

3.2.2 On a factor graph that is tree

Now we’ll generalize the algorithm to apply to factor graphs. Think of the variable Xk. It
is connected to a set of factors, which we will call neighbors(Xk). On the “far side” of each
factor is a whole set of other factors. These factor sets do not overlap. We will express the
marginal at node Xk as a product of new factors Fs, one for each neighbor φs of Xk, each of
which summarizes the effects of the whole set of variables Xw and factors that are on the
far side of factor φs.

We can express the marginal at node k as:

Pr(xk) =
∑
x−{xk}

Pr(x)

=
∑
x−{xk}

∏
i

φi(x)

=
∑
x−{xk}

∏
S∈neighbors(Xk)

Fs(xk, zs)

where zS is the set of variables that are in the tree rooted at factor S, but not including the
children of Xk and Fs(xk, zs) represents the product of all the factors in that tree.

Exchanging sums and products in a similar way as for the chain, and adding in one
term for each factor S connected to Xk, we can write this as a product of incoming messages:

Pr(xk) =
∏

S∈neighbors(Xk)

∑
xs

Fs(xk, xs)

=
∏

S∈neighbors(Xk)

µφS→Xk
(xk)



MIT 6.867 Fall 2016 12

Now we can express a recursive algorithm in which messages are passed “inward,”
from the leaves of the tree. There are two kinds of messages: those going from factors to
nodes, and those going from nodes to factors. This is a pretty abstract

description. There is a
small worked example
in the recitation hand-
out.

This is a pretty abstract
description. There is a
small worked example
in the recitation hand-
out.

Factor-to-node messages: Let XS be the set of variables connected to factorφS. To compute
a message from φS to Xk, we take the sum over all the values of variables in φS except for
Xk, of the product of the factor φs applied to those values times the product, over all the all
the variables Xm that are neighbors of φk except for Xk, of the messages going from those
variables into φS:

µφS→Xk
(xk) =

∑
xS\xk

φs(xs)
∏

Xm∈Xs\Xk

µXm→φS
(xm) .

Base case if φ is a leaf:
µφ→Xi

(xi) = φ(xi) .

Node-to-factor messages: There is a similar method for computing messages from nodes
to factors:

µXm→φS
(xm) =

∏
φl∈neighbors(Xm)\φS

µφl→Xm
(xm) .

Base case if Xi is a leaf:
µXi→φ(xi) = 1 .

Sum-Product Algorithm for finding marginal Pr(Xj): every variable and factor node com-
putes and sends a message to its remaining neighbor whenever it has received messages
from all but one of its neighbors; leaves can send a message immediately. As soon as node
Xj has received a message from every one of its neighbors, it does a pointwise multiplica-
tion on the messages, and normalizes the result to get Pr(Xj).

To find all the marginals:

• Arbitrarily pick a root node

• Do one phase of message passing toward root

• Do one phase of message passing away from root

If the original graph was a directed graph, then the marginals we compute will already
be normalized; otherwise, the marginals will not be normalized, but since they are over a
single variable, it easy to compute 1/Z by summing the values of any one of the unnormal-
ized marginals.

Example of sum-product algorithm Figure 2 illustrates the operation of the sum-product
algorithm. It contains a factor graph, with the factors shown in blue tables. The messages
in red illustrate an “inward pass” toward node A. We’ll work through part if it, starting
from the message originating from G.

• The base case for a leaf that is a variable is to pass in a message that is 1 for all values.
Recall that a message is mapping from possible values of a variable, in this case, G,
to real numbers. In this example, all the variables are binary, so the messages have
two numbers, one for variable value 0 and one for variable value 1.

• Now, we compute a message from factor φDG to node D. Recall that Written F_DG→D in the
figure, out of laziness.
Written F_DG→D in the
figure, out of laziness.

µφS→Xk
(xk) =

∑
xS\xk

φs(xs)
∏

Xm∈Xs\Xk

µXm→φS
(xm) .



MIT 6.867 Fall 2016 13

A

E

G

C

D

F

B

B

1
0

7
3

1 1
5 5

3 7

3 7

1 1

1 1

5 4

5 3

25 12

73 112

3 7
5 5 255 230

55845 180320
0.236 0.763

Marginal on A

765 1610

7205 4670

36025 14010

78055 158100
0.331 0.669

Marginal on F

78055 158100

A

1
0

7
3

111
210

CE

01
00

4
1

111
310

CF

01
00

4
1

111
410

AC

01
00

4
1

111
410

DG

01
00

4
1

3111
110 1
101 4
100 2

2011
4010

ABD

001
000

2
1

G→F_DG
F_DG →D

F_B →B

B→F_ABD

D→F_ABD

F_A →A

F→F_CF

F_CF →C

E→F_CE

C→F_AC

F_AC →A

F_ABD →A

A→F_AC

F_AC →C
F_CE →C

C→F_CF

Figure 2: Example partial execution of the sum-product algorithm. All variables are binary.
Blue boxes are factors; red boxes are message going in to node A; green boxes are messages
going out toward F.



MIT 6.867 Fall 2016 14

In this case,
µφDG→D(d) =

∑
g

φDG(d,g)µG→φDG
(g) .

Since the incoming message is all 1, this amounts to summing over all values of G in
the factor to get an entry in the outgoing message on D. Because there are only two
factors connected to variable D, the message from the factor on B to φB is the same
as the message from B to φABD.

• Now something interesting happens: we have messages µB→φABD
and µD→φABD

coming in, so factor φABD is ready to compute an outgoing message to A. This one
is somewhat trickier. We have

µφABD→A(a) =
∑
bd

φABD(abd) · µB→φABD
(b) · µD→φABD

(d) .

One way to think about this computing this is to “multiply the tables”. We would
do this by taking the table for the factor, and then multiplying the messages into the
table: so, for instance, to take the incoming message from B, we would multiply all
the entries in the factor table that have B = 0 by 3, and all the entries in the factor
table that have B = 1 by 7. The other factor has a value of 5 for both values, so that
results in just multiplying all the table entries by 5. Then, to compute a message to
A, we sum all the entries in the product table that have value A = 0 and get 255; then
sum all entries that have valueA = 1 and get 230. This is the message from this factor
to variable A.

• We will assume that this process has taken place in other parts of the tree, resulting
in three messages coming into variable A. Now, we can compute the marginal at A:

Pr(Xm) ∝
∏

φl∈neighbors(Xm)

µφl→Xm
(xm) .

In this case,
Pr(A) ∝ µφABD→A(a) · µφA→A(a) · µφAC→A(a) .

This gives us an unnormalized potential on A of (55845, 180320), which normalizes
to 0.236, 0.763.

• Now, to illustrate the computation of other marginals, let’s see how the computation
of Pr(F) proceeds. The critical thing is that the node A sends a message toward factor
φAC, which is not the marginal on A. It is computed as usual, taking into account
messages from all the factors except φAC. So,

µA→φAC
(a) = µφABC→A(a) · µφA→A(a) .

• This process continues, generating the messages shown in green, until we get a marginal
on F of (0.497, 0.503).

Incorporating evidence Just as in variable elimination, we can add in a extra factors that
assign value 1 to observed values of the evidence variables and 0 to non-observed values
of the evidence variables, and proceed with the sum-product algorithm as above.

Continuous variables If the distributions are appropriately conjugate, then we can run
the same algorithm on graphs of continuous variables. For instance, distributions in which
the variables have linear-Gaussian dependence on one another can be handled directly, by
replacing sums with integrals.



MIT 6.867 Fall 2016 15

3.2.3 Finding MAP values

If we want to find the most likely assignment of some variables, we might consider running
the sum-product algorithm to get all the marginals and then finding the maximum value
in each marginal. Although these values individually maximize the marginals, they do not
necessarily constitute a maximizing assignment in the joint probability distribution. This is a homework ex-

ercise.
This is a homework ex-
ercise.In the sum product algorithm, we took advantage of the fact that

ab+ ac = a · (b+ c) .

Now, we will take advantage of a similar relationship for max:

max(ab,ac) = a ·max(b, c) .

Algebraically, max has the same relationship to multiplication as summation does. That
means that our strategy for computing maxx

∏
iφi(x) can be structurally the same as our

strategy for computing
∑
x

∏
iφi(x).

Max-product algorithm If we simply take the sum-product algorithm, change all addi-
tion operations to max, and do a single pass inward from leaves to an arbitrarily chosen
root note, then we will compute maxx Pr(x).

Max-sum algorithm Multiplying all those small probabilities can lead to serious loss of
precision; to make the computation better conditioned, we can work with log probability
values. Because log is monotonic, it preserves the maximum, so:

log max
x

∏
i

φi(x) = max
x

log
∏
i

φi(x) = max
x

∑
i

logφi(x) .

The distributive property is preserved because

max(a+ b,a+ c) = a+ max(a, c) .

So, if we change the max-product algorithm by replacing products of factor values by sums
of logs of factor values, we get the max-sum algorithm, which has the following messages:

µφS→Xk
(xk) = max

xS\xk
logφs(xs) +

∑
Xm∈Xs\Xk

µXm→φS
(xm) .

µXm→φS
(xm) =

∑
φl∈neighbors(Xm)\φS

µφl→Xm
(xm) .

Base case if φ is a leaf:
µφ→Xi

(xi) = logφ(xi) .

Base case if Xi is a leaf:
µXi→φ(xi) = 0 .

Backtracking Now, what we might really want to find is the entire maximizing assign- Not to be confused with
backtracking search...
Not to be confused with
backtracking search...ment,not just its probability. Unfortunately, we can’t do it using the straightforward ex-

This is sometimes called
“decoding” and has a
connection to coding
theory.

This is sometimes called
“decoding” and has a
connection to coding
theory.

tension of sum-product and doing an “outward” pass of message propagation through the
algorithm, in case there are multiple joint assignments with the same maximizing proba-
bility that have different assignments.



MIT 6.867 Fall 2016 16

A

E

G

C

D

F

B

1 1

4, G04, G1

3 7

3 7

1 1

1 1

4, F1 3, F0

4, E1 2, E0

16 6

24, C1 64, C0

3 7

4 4 112,B1D0 84, B1D1

Max P = 37632 / Z
Maximizing A = 1

B = 1, D = 1, G = 0, C = 0, E = 1, F = 1

B

1
0

7
3

A

1
0

7
3

111
210

CE

01
00

4
1

111
310

CF

01
00

4
1

111
410

AC

01
00

4
1

111
410

DG

01
00

4
1

3111
110 1
101 4
100 2

2011
4010

ABD

001
000

2
1

G→F_DG

F_DG →D

F_B →B

B→F_ABD

D→F_ABD

F_A →A

F→F_CF
F_CF →C

E→F_CE

C→F_AC

F_AC →A

F_ABD →A

F_CE →C

Figure 3: Example execution of the max-product algorithm. All variables are binary. Blue
boxes are factors; red boxes are message going in to node A, and also include the local
assignments that were selected to compute a particular maximum value; maximizing as-
signment shown in black text at the bottom.

We begin with an inward pass, but with a bit of extra bookkeeping. When we compute
inward message from each clique,

µφS→Xk
(xk) = max

xS\xk
logφs(xs) +

∑
Xm∈Xs\Xk

µXm→φS
(xm) .

we keep track, for each value of xk, of a set Y∗S(xk) of possible maximizing joint assignments
to XS \ Xk, which were responsible for the max value in the message.

Then, for whatever node Xj we decided to use as the root in the first pass of max-sum,
we know that x∗j = arg maxxj Pr(Xj = xj) is a component of some MAP assignment. Now,
we begin an outward pass. Instead of passing a probability message into a clique φS, we
pass in the maximizing value x∗k of the variable that was missing when it was evaluated.
Now, that cliques selects any member of Y∗S(xk), which provides maximizing assignments
for the variables XS \ Xk. These maximizing assignments are propagated to any cliques
that are neighbors of variables in XS \ Xk, and so on, out to the trees.

Example of max-product algorithm The figure 3 shows an example execution of the max-
product algorithm.We will walk through some parts of the computation. We didn’t take logs and

do max-sum here, in or-
der to keep the num-
bers intuitively un-
derstandable; but in a
real example, it’s much
more numerically stable
to do max-sum.

We didn’t take logs and
do max-sum here, in or-
der to keep the num-
bers intuitively un-
derstandable; but in a
real example, it’s much
more numerically stable
to do max-sum.

• This time, let’s start from node F. The message µF→φCF
is the base case, (1, 1). We

multiply it into the factor φCF . Now, instead of summing out values of F, we maxi-

Which has no effect be-
cause it is (1, 1).
Which has no effect be-
cause it is (1, 1).



MIT 6.867 Fall 2016 17

mize over them. The result is a message on C, which says that for C = 0 we an attain
a value of 4, if F = 1, and that for C = 1 we can attain a value of 3, if F = 0.

• At node C, we multiply the incoming messages (4, 3) and (4, 2), to get an outgoing
message µC→φAC

of (16, 6).

• We keep going...let’s see what finally happens at node A. We have incoming mes-
sages on all the arcs, and just do a pointwise multiply to get a factor onA of (8064, 37632).
This potential is not a marginal distribution on A. But we can conclude that value of
A in an assignment of values to all the variables that maximizes Pr(X) is A = 1. Because that value is

higher in the potential.
Because that value is
higher in the potential.

• Now, we can do the “backtracking” to find the rest of the assignment. We see that,
for A = 1, to get the value 84 from φABD, we need B = 1 and D = 1.

• If D = 1, then to get value 4 from φDG, we need to have G = 0.

• Similarly, in the other part of the network, we see we need C = 0, which forces E = 1
and F = 1.

3.3 Converting graphs to trees

The message-passing algorithms are only well-defined on factor graphs that are trees. If
we want to do exact inference on a graph that is not a tree, we must convert it into a tree. It
is possible to look at the sequence of factors that get generated during variable elimination
and use them to create a tree of cliques, which is sometimes called a junction tree. Then,
there is a message passing algorithm on the junction tree that can be used to compute all
the marginals. It is exponential in the tree width (as is variable elimination).

4 Approximate Inference

If we have a graph with a large tree-width, or with a mixture of distributions that makes it
impossible to represent intermediate messages, then we have to fall back on approximate
inference methods. We will explore three different strategies.

4.1 Loopy BP

One easy approximation method, in models for which belief propagation is appropriate
(e.g., all discrete or linear Gaussian models), but where the factor graph is not a tree, is to
apply the message passing algorithm. Now, instead of just doing two passes, we could
continue to apply it, iteratively.

• This algorithm will not always converge. It is possible to increase the chance of con-
vergence by, instead of computing a new message each time through, to average the
old message with the newly-calculated message, and propagate the average instead.

• If it does converge, it might converge to the wrong answer. In particular, it can be-
come overconfident about certain values because information that some evidence
yields about a variable might be “double counted” if there are multiple paths through
the graph from the evidence to the node in question.




