
L12 – Sampling, Max-Product and Discrete
HMMs

Barber 5.2.1, 23.2, AIMA 14.1–14.3
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What you should know after this lecture

• How to use the max-product algorithm to find the
maximum likelihood complete assignment in a factor
graph

• How to use sampling in Bayes nets and factor graphs to
compute approximate answers to conditional probability
queries

• What a hidden Markov model is and what it is good for
• What a recursive “filter” is, in this context
• How to solve inference problems in an HMM using

sum-product and max-product
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Probabilistic reasoning about
partially-specified world states

Factored states
Discrete-valued factors
Approximate inference
Temporal models
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Finding most probable assignment in a factor graph

We can an algorithm very similar to sum product, called max
product. Just as ab+ ac = a · (b+ c),
max(ab,ac) = a ·max(b, c) for non-negative a.
Do forward pass with messages as for sum-product, but

µφ→V(v) = max
w̄∈N(φ)\V

φ(v, w̄)
∏

W∈N(φ)\V

µW→φ(w)

Keep track of the values ofW that yielded the max for each v:

MV(v) = argmax
w̄∈N(φ)\V

φ(v, w̄)
∏

W∈N(φ)\V

µW→φ(w)
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Decoding to find most probable assignment

Work backward from root V :

v∗ = argmax
v

P(v)

Best value for each childWi of V :

w∗1, . . . ,w∗k =MV(v)
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Approximate inference methods

Especially when the model is large or loopy, exact inference can
be too computationally expensive. What to do?

• Amortized inference: if you will have to solve many
similar inference problems in the future, then
• Solve a bunch of problems of the form P(Q | E = ei)
• Train a supervised neural network to map from ei to
P(Q | E = ei)

• Just use the neural net at query time
• Sampling-based methods

• We want to compute P(V | E = e)
• Draw samples v1, . . . , vM ∼ P(V | E = e)
• Compute

P̂M =
1
M

M∑
i=1

vi

• Converges to P(V | E = e) asM→∞
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Sampling in Bayes nets

Easy to do ancestral sampling to get samples of any
unconditional marginal or joint v̄ ∼ Pα(V̄) when α is a BN

1. Sort nodes in α into topological order so that all nodes
pa(V) come before V in the ordering.

2. For i = 1 toM `// number of samples
• For j = 1 to N `// number of nodes in network
xij = sample(Pα(Vj | pa(Vj) = xij[pa(Vj)])))

3. Use {xi}i=1..M to estimate whatever you want, e.g.

P̂α(Vk = 1,Vj = 0) =
1
M
I(xik = 0 ∧ xij = 0)

where I(a) = 1 if a else 0
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Conditional sampling
What if we want Pα(V | E = e)? Two general approaches:
• Rejection sampling: do ancestral sampling, but throw

away all examples in which E , e.
• Can be very slow if P(E = e) is small.

• Importance sampling: sample from an easier distribution
Q, but reweight the samples to compute your result
• Let Q be a distribution over same domain as desired

distribution P and {xi}1,...,M ∼ Q(x)

• Define wi =
P(xi)
Q(xi)

and Z =
∑
wi

• Then, e.g.,

P̂(X = 1) =
1
Z

M∑
i=1

wiI(x
i = 1)

• Necessary that Q(x) > 0 for any xwhere P(x) > 0.
• Have to be able to evaluate P(x) and Q(x)
• If P and Q are very different, you will need largeM to get a

good estimate.
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Bayes net importance sampling

In Bayes nets, let Z = V \ E (the unobserved nodes)
• Fix all E = e and then use ancestral sampling to get

samples from

Q(Z) =
∏
i

P(Zi | pa(Zi))

• Importance weights

P(z | e)

Q(z)
∝ P(z, e)

Q(z)
=

∏
i P(zi | pa(Zi))

∏
j P(ej | pa(Ej))∏

i P(zi | pa(Zi)

=
∏
j

P(ej | pa(Ej))

The name importance sampling also used in a context of sampling from continuous

distributions for a different method.
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Gibbs sampling

Can be applied in Bayes nets but easiest to think of in factor
graphs. Simple type of Markov chain Monte Carlo (MCMC).
• Define a Markov chain where

• States are assignments of values to all variables
• The stationary distribution of the chain is the desired

distribution P(V̄)
• To do estimation:

• Run the chain for a while and throw those samples away
(“burn in” phase)

• Keep (every kth) sample and use them to estimate the
quantity of interest
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Gibbs sampling in graphical model

1. Initialize values v1, . . . , vN at random
2. Loop

• Choose i randomly from 1, . . . ,N
• Set vi to a sample from

P(Vi | V \ Vi = v \ vi) = P(Vi | mb(Vi)) = mb(vi))

where mb(Vi) is the Markov blanket
3. Use the vi samples to estimate quantity of interest.

Markov blanket
• In a factor graph, it’s the neighboring nodes

P(Vi | mb(Vi) = mb(vi)) =
∏

φ∈N(Vi)

φ[mb(vi)]

where φ[mb(vi)] is the vector of values for variable Vi that
remains after selecting the other dimensions of factor φ to
have their associated values in mb(vi).6.0411/16.420 Fall 2023 11



Robot Localization
• Robot initially has no idea where it is.

• Robot has a door detector. Intuitively (to us!) this gives the robot three
possible locations it might be at.

(Figure due to Thrun, Burgard and Fox, 2003, Probabilistic Robotics.)

• Concerns:
• How do we represent those three locations? Is it really only three locations

the robot can be at?
• What happens when the robot moves?
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Robot Localization

• Let’s say the state at each time t is st, where st is a
random variable over the domain of locations (e.g.,
discrete locations in the hallway).

• Let’s say the observations at each time step are ot over
the domain of {Door, No-Door}

• We need some way of linking the states at time st and
st+1 and the states to the observations. Our door detector
might sometimes fail, and it’ll fail in proportion to how
close (or far) we are from the door. Also, when we try and
move from state st to st+1, sometimes we’ll stop short,
sometimes we’ll overshoot.

• Let’s represent st and ot as random variables, and assume
that we know P(st+1|st), P(ot|st) and a prior P(s0).
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Resulting Graphical Model
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Hidden Markov Models

• Idea first due to Baum (1966), used throughout
communications field, summarized by Rabiner (1989)

• Defined by a model λ consisting of a tuple
λ = (S,O,A,B,π) that describe a discrete dynamical
system as follows:
• S is the set of hidden discrete states S = {s(1), s(2), . . . , s(n)}
• O is the set of discrete observations
O = {o(1),o(2), . . . ,o(m)}

• A = {Aij} is the dynamics or “transition” model,
Aij = P(St = s(j) | St−1 = s(i))

• B = {Bik} is the measurement or “sensor” model,
Bik = P(Ot = o(k) | St = s(i))

• π is the initial state distribution

Barber uses h for states, v for observations. AIMA uses X for states, e for
observations, and never uses a specific symbol for the transition or
observation models. We are using s for states and o for observations to be
consistent with the MDP and POMDP lectures coming up.
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Dependencies in Hidden Markov Models

• Note that A, B and π are potentials of the form φ(·) that we
saw in last lecture.

• HMM defined by:
• S0:t−1 ⊥⊥ St+1:T | St
• Ot ⊥⊥ (S0:t−1,St+1:T ) | St
• We have conditional distributions P(Ot|St) and P(St+1|St)
• First assumption known as the “Markov” assumption.
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Three Questions

Three questions we might ask:
• Given the observation sequence o0:T = {o0,o1, . . . ,oT },

how do we efficiently compute P(ST |o0:T ), the probability
of the observation sequence given the model?

• Given the observation sequence o0:T = {o0,o1, . . . ,oT },
how do we efficiently compute P(o0:T ), the probability of
the observation sequence given the model?

• Given the observation sequence o0:T = {o0,o1, . . . ,oT },
how do we find a corresponding state sequence
s∗0:T = {s∗0, s∗1, . . . , s∗T } which is optimal in some
meaningful sense (i.e., best “explains” the observations)?

Rabiner did not include our first question, but did include an important additional

question about how to estimateA and B from data.
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Filtering

Compute P(sT | o0:T )

• Use sum-product, with ST as the root of the tree.
• Conditioning on evidence o0, . . . ,oT effectively selects out

a specific column of B for each time step.

P(S0 | o0) ∝ π · Bo0

P(St | o0:t) ∝
∑
St−1

P(St−1 | o0:t−1) ·A · Bot

• Nice recursive form! Often called Bayes filter.
• To connect with usual treatment, define αt = P(St | o0:t)

• Product of messages coming from previous state and from
observation.

6.0411/16.420 Fall 2023 18



Smoothing

More generally, compute, for all t, P(st | o0:T )
Forward-Backward algorithm = sum-product
• Do forward pass, computing α from left
• Do backward pass, computing messages from the right

βt ∝ P(St | ot+1:T )

=
∑
St+1

A · Bot+1 · P(St | ot+2:T )

=
∑
St+1

A · Bot+1 · βt+1

βT = 1

• P(St | o0:T ) = αtβt
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Likelihood of observation sequence
The values αT are equivalent to P(o0:T ,ST ), so

P(o0:T ) =
∑
s

P(o0:T ,ST = s) =
∑
s

αT [s]

Derivation:

P(o0:T ) =
∑
s0:T

P(o0:T | s0:T )P(s0:T )

=
∑
s0:T

 T∏
t=0

P(ot | st)

P(s0:T )

=
∑
s0:T

 T∏
t=2

P(ot | st)

P(s2:T | s1)

(
P(s1 | s0)P(o1 | s1)

)
P(o0 | s0)P(s0)


=

∑
s0:T

BsT ,oT ·AsT−1,sT . . .Bs1,o1 ·As0,s1 ·Bs0,o0 ·π(s0)

= BsT ,oT ·
∑
sT

AsT−1,sT . . .Bs1,o1 ·
∑
s0©
↓

Marginalizing out s0

As0,s1 ·Bs0,o0 ·π(s0)︸                 ︷︷                 ︸
α0

︸                                                     ︷︷                                                     ︸
α1

⇒ αt+1 =

 |S|∑
j=0

αtAi,j

 ·Bi,ot+1
And P(o0:T ) =

∑
αT
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Maximum likelihood state sequence
Compute s∗0:T = argmaxs0:T

P(s0:T | o0:T ) using max-product
algorithm!
• Forward pass to compute

δt = max
s0:t

P(s0:t | o0:t) = max
St−1

A · δt−1 · Bot

• Remember best st−1 for each s

ψt(s) = argmax
St−1

A · δt−1 · Bot

• Backtrace:

s∗T = argmax
ST

δT

s∗t = ψt+1(s
∗
t+1)
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Viterbi Decoding Example (from AIMA)

One step of Viterbi decoding would be: If we set the P(Rt = T |Rt−1 = T) = 1 and
P(Rt = F|Rt−1 = F) = 1, we get a slightly different
graph:

• On the right, it might be the case that the Rt = F really is the most likely state. How might this happen?
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Next time

• Graphical models with continuous distributions
• Kalman filtering
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