
L11 – Undirected Graphical Models

Barber 4.1, 4.2, 4.4, 5.1 (Notice that we are changing texts.)
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http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf


What you should know after this lecture

• How a factor graph represents a distribution
• Relationship between factor graphs and Bayes nets
• How to use the sum-product algorithm to compute

marginals in a factor graph
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Probabilistic reasoning about
partially-specified world states

Factored states
Discrete-valued factors
Probability over possible
worlds!
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Undirected models

• Directed models (Bayes nets) are good for many problems,
particularly when there is a causal interpretation of the
arrows. (Though causality is not necessary)

• Relationship between pixels in an image or adjacent plots
of property is not independent but there’s no sensible way
to assign a direction.

• Can make graphical models with nodes and undirected
arcs: Markov random fields

• We will skip that step and go straight to a formalism called
factor graphs that can represent both directed and
undirected models.
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Factor graphs
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Undirected bipartite graph: factors only connect to variables
• Round nodes are random variables V
• Square nodes are factors φ: tables specifying, for each tuple

of value of the connected variables, a non-negative number
• Represent a probability distribution (e.g. left graph above)

P((a,b, c,d, e, f)) =
1
Z
φ1(a)φ2(b)φ3(a,b,d)φ4(a, c)φ5(d,g)φ6(c, e)φ7(c, f)

where Z is a normalizer

Z =
∑

a,b,c,d,e,f

φ1(a)φ2(b)φ3(a,b,d)φ4(a, c)φ5(d,g)φ6(c, e)φ7(c, f)
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Bayes nets to factor graphs

• Variable nodes are the same
• Add one factor for each CPT
• Connect it to the “output” node and all parents
• Note that, for this construction Z = 1 (no need to

normalize!)
Prove this to yourself by recalling the probability
distribution represented by a Bayes net.
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Independence relations in factor graphs

• The Markov blanket of a node V consists of all nodes that
are connected to any factor connected to V .

• The Markov blanket of A in our example is {B,D,C}
• A node V is not independent of any node in its MB
• A node V is conditionally independent of the rest of the

graph, conditioned on mb(V)
• There are some sets of independence relations that are

describable by a Bayes net but not describable by a factor
graph (and vice versa)
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Inference in factor graphs
Some inference problems:
• Joint distribution: In a factor graph, use table

multiplication to compute a big table

1
Z

∏
k

φk

where Z is the sum of all table entries
• Marginal distribution: P(Y) where Y ⊂ V

• Conditional probability: P(Y | E = e), where Y ⊂ V, E ⊂ V,
and Y ∩ E = ∅; and e is the observed values of the variables
in E. Note that it is not necessary that Y ∪ E = V.

• Most probable assignment (MAP):

argmaxyP(Y = y | E = e) .

Note that the MAP of a set of variables is not necessarily
the set of MAPs of the individual variables.6.0411/16.420 Fall 2023 8



Computing all the individual marginals

• This method only applies if your factor graph does not
have any cycles!

• Awesome algorithm with many names: belief propagation,
sum-product, message passing

• Runs in time O(N · |T∗|) where N is the number of nodes
and |T∗| is number of entries in the largest table
(exponential in the number of variables it is connected to).

• Can parallelize the computation.
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Belief propagation idea
• Pick an arbitrary variable Vi ∈ V to be the root node
• Let N(V) be the factors connected to V , N(φ) vars connected to φ

P(Vi) =
∑
V\Vi

P(v̄)

=
∑
V\Vi

∏
j

φj(v̄)

=
∑
V\Vi

∏
φ∈N(Vi)

Fφ(v̄)

=
∏

φ∈N(Vi)

∑
V∈N(φ)\Vi

Fφ(v̄)

=
∏

φ∈N(Vi)

µφ→V (v)

where Fφ is the product of all the factors in the subtree attached to
factor φ

• Recursive algorithm passes messages from leaves up to
root, and then back down again
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Factor-to-variable messages

µφ→V(v) expresses the φ subtree’s preference over the vector of
possible values v for variable V
Let N(φ) be the set of variables connected to factor φ

µφ→V(v) =
∑

W∈N(φ)\V

φ(v, w̄)
∏

W∈N(φ)\V

µW→φ(w)

Base case if φ is a leaf:

µφ→V(v) = φ(v)

Think of µφ→V as representing P(V) if all subtrees except φ
were cut off.
Slight abuse of notation:

∏
is multiplying tables,

∑
is marginalizing out

variables.
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Variable-to-factor messages

µV→φ(v) expresses the V subtree’s preference over the vector of
possible values v for variable V

µV→φ(v) =
∏

ψ∈N(V)\φ

µψ→V(v)

Base case if Xi is a leaf:

µV→φ(v) = 1

Think of µV→φ as representing P(V) if factor φ were cut off.
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Sum-Product
1. Select Vi as root
2. Recursively compute P(Vi) ∝

∏
φ∈N(Vi)

µφ→Vi
3. Pass messages back down the tree, at each node computing

marginal P(Vj) ∝
∏
φ∈N(Vj)

µφ→Vj

Recall that ∝means “proportional to,” and we generally need to normalize to
get a distribution.6.0411/16.420 Fall 2023 13



Handling evidence

To compute P(V | E = e), add a new potential for every variable
Vi ∈ E that assigns 1 to Vi = ei and 0 to all other values for Vi.
Then run sum-product.
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More than marginal!

Easy to compute P(Vi,Vj) if they are connected in the graph via
one factor φ:

P(Vi,Vj) ∝ φ
∏

φi∈N(Vi)\φ

µφi→Vi

∏
φj∈N(Vj)\φ

µφj→Vj

∏
Vk∈N(φ)\{Vi,Vj}

µVk→φ

Multiply everything coming into Vi, Vj, and φ from elsewhere,
and normalize
If they aren’t neighbors, then for each value Vi = vi, compute

P(Vi = vi,Vj = vj) = P(Vi = vi | Vj = vj)P(Vj = vj)

using tools we have already established.
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Handling loopy factor graphs

Exact inference is exponential in the number of variables in the
“tree width” (largest group of variables that has to be
considered jointly)

1. Cutset conditioning: pick a subset of nodes C such that, if
they were removed, the remaining graph would be a tree.
Iterate over assignments to C, do inference, and then
reassemble the answers.

2. Variable elimination: iteratively,
• Pick a variable V (efficiency depends on how you do this)
• Define new φ ′ =

∑
v

∏
φ∈N(V)φ

• Remove V and all φ ∈ N(V) from graph
• Add φ ′ (defined on all neighboring variables)
• Until you have a tree (or one big table!)

3. Junction tree alg : complicated!
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Approximation methods

1. Keep iterating belief propagation. It might converge...
2. Sampling : later!
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Next time

• Approximate inference via sampling
• Finding the most likely assignment
• Temporal models
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Sum-Product Practice
P(C) =

∑
A

∑
B

P(A,B,C)

= 1/Z
∏
i

µfi→q

µf1→C(C) =
∑
A

φf1(C,A)

µf2→C(C) =
∑
A

φf2(B,A)

• Suppose

φf1(C,A) =


A C φf1(A,C)
T T 0.05
T F 0.45
F T 0.45
F F 0.05



Then

µf1→C =

C µ

T .5
F .5



• Suppose

φf2(B,A) =


B C φf1(A,C)
T T 0.0
T F 0.5
F T 0.0
F F 0.5



Then

µf2→C =

C µ

T 0
F 1



• Which means

P(C) = (1/Z)(µf1→C × µf2→C)

= 1/Z

C µ

T .5
F .5

×
C µ

T 0
F 1

 =

C P(C)
T 0
F 1

 whereZ = 0.5
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Sum-Product Practice
P(C) = 1/Z

2∏
i=1

µfi→C

µf1→C =
∑
A

φf1µA→f1

µA→f1 = 1

µf2→C =
∑
A

φf2µB→f2

µB→f2 = 1

µf3→A = f3

µA→f1 = µf3→A

µf1→C =
∑
A

f1 · µA→f1

µE→f4 = 1

µf4→B =
∑
E

f4 · µE→f4

µG→f5 = 1

µf5→B =
∑
G

f5 · µG→f5

µB→f2 = µf4→B · µf5→B

µF→f2 = 1

µf2→C =
∑
B,F

f2 · µB→f2 · µF→f2

P(C) ∝ µf1→C · µf2→C

6.0411/16.420 Fall 2023 20



Note that, to do the backward pass, you do not pass P(C) back out. So

µC→f1 = µf2→C. Similarly µC→f2 = µf1→C. And then

µf2→F =
∑
C,B f2 ·µC→f2 ·µB→f2 .
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