
L11 – Undirected Graphical Models

Barber 4.1, 4.2, 4.4, 5.1 (Notice that we are changing texts.)

6.0411/16.420 Fall 2023 1

http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf

What you should know after this lecture

• How a factor graph represents a distribution
• Relationship between factor graphs and Bayes nets
• How to use the sum-product algorithm to compute

marginals in a factor graph

6.0411/16.420 Fall 2023 2

Probabilistic reasoning about
partially-specified world states

Factored states
Discrete-valued factors
Probability over possible
worlds!

6.0411/16.420 Fall 2023 3

Undirected models

• Directed models (Bayes nets) are good for many problems,
particularly when there is a causal interpretation of the
arrows. (Though causality is not necessary)

• Relationship between pixels in an image or adjacent plots
of property is not independent but there’s no sensible way
to assign a direction.

• Can make graphical models with nodes and undirected
arcs: Markov random fields

• We will skip that step and go straight to a formalism called
factor graphs that can represent both directed and
undirected models.

6.0411/16.420 Fall 2023 4

Factor graphs

A

EG

C

D

F

B

F2

F5 F3

F1

F6

F7

F4

A
E

G

C

D

F

B

Undirected bipartite graph: factors only connect to variables
• Round nodes are random variables V
• Square nodes are factors φ: tables specifying, for each tuple

of value of the connected variables, a non-negative number
• Represent a probability distribution (e.g. left graph above)

P((a,b, c,d, e, f)) =
1
Z
φ1(a)φ2(b)φ3(a,b,d)φ4(a, c)φ5(d,g)φ6(c, e)φ7(c, f)

where Z is a normalizer

Z =
∑

a,b,c,d,e,f

φ1(a)φ2(b)φ3(a,b,d)φ4(a, c)φ5(d,g)φ6(c, e)φ7(c, f)

6.0411/16.420 Fall 2023 5

Bayes nets to factor graphs

• Variable nodes are the same
• Add one factor for each CPT
• Connect it to the “output” node and all parents
• Note that, for this construction Z = 1 (no need to

normalize!)
Prove this to yourself by recalling the probability
distribution represented by a Bayes net.

6.0411/16.420 Fall 2023 6

Independence relations in factor graphs

• The Markov blanket of a node V consists of all nodes that
are connected to any factor connected to V .

• The Markov blanket of A in our example is {B,D,C}
• A node V is not independent of any node in its MB
• A node V is conditionally independent of the rest of the

graph, conditioned on mb(V)
• There are some sets of independence relations that are

describable by a Bayes net but not describable by a factor
graph (and vice versa)

6.0411/16.420 Fall 2023 7

Inference in factor graphs
Some inference problems:
• Joint distribution: In a factor graph, use table

multiplication to compute a big table

1
Z

∏
k

φk

where Z is the sum of all table entries
• Marginal distribution: P(Y) where Y ⊂ V

• Conditional probability: P(Y | E = e), where Y ⊂ V, E ⊂ V,
and Y ∩ E = ∅; and e is the observed values of the variables
in E. Note that it is not necessary that Y ∪ E = V.

• Most probable assignment (MAP):

argmaxyP(Y = y | E = e) .

Note that the MAP of a set of variables is not necessarily
the set of MAPs of the individual variables.6.0411/16.420 Fall 2023 8

Computing all the individual marginals

• This method only applies if your factor graph does not
have any cycles!

• Awesome algorithm with many names: belief propagation,
sum-product, message passing

• Runs in time O(N · |T∗|) where N is the number of nodes
and |T∗| is number of entries in the largest table
(exponential in the number of variables it is connected to).

• Can parallelize the computation.

6.0411/16.420 Fall 2023 9

Belief propagation idea
• Pick an arbitrary variable Vi ∈ V to be the root node
• Let N(V) be the factors connected to V , N(φ) vars connected to φ

P(Vi) =
∑
V\Vi

P(v̄)

=
∑
V\Vi

∏
j

φj(v̄)

=
∑
V\Vi

∏
φ∈N(Vi)

Fφ(v̄)

=
∏

φ∈N(Vi)

∑
V∈N(φ)\Vi

Fφ(v̄)

=
∏

φ∈N(Vi)

µφ→V (v)

where Fφ is the product of all the factors in the subtree attached to
factor φ

• Recursive algorithm passes messages from leaves up to
root, and then back down again

6.0411/16.420 Fall 2023 10

Factor-to-variable messages

µφ→V(v) expresses the φ subtree’s preference over the vector of
possible values v for variable V
Let N(φ) be the set of variables connected to factor φ

µφ→V(v) =
∑

W∈N(φ)\V

φ(v, w̄)
∏

W∈N(φ)\V

µW→φ(w)

Base case if φ is a leaf:

µφ→V(v) = φ(v)

Think of µφ→V as representing P(V) if all subtrees except φ
were cut off.
Slight abuse of notation:

∏
is multiplying tables,

∑
is marginalizing out

variables.

6.0411/16.420 Fall 2023 11

Variable-to-factor messages

µV→φ(v) expresses the V subtree’s preference over the vector of
possible values v for variable V

µV→φ(v) =
∏

ψ∈N(V)\φ

µψ→V(v)

Base case if Xi is a leaf:

µV→φ(v) = 1

Think of µV→φ as representing P(V) if factor φ were cut off.

6.0411/16.420 Fall 2023 12

Sum-Product
1. Select Vi as root
2. Recursively compute P(Vi) ∝

∏
φ∈N(Vi)

µφ→Vi
3. Pass messages back down the tree, at each node computing

marginal P(Vj) ∝
∏
φ∈N(Vj)

µφ→Vj

Recall that ∝means “proportional to,” and we generally need to normalize to
get a distribution.6.0411/16.420 Fall 2023 13

Handling evidence

To compute P(V | E = e), add a new potential for every variable
Vi ∈ E that assigns 1 to Vi = ei and 0 to all other values for Vi.
Then run sum-product.

6.0411/16.420 Fall 2023 14

More than marginal!

Easy to compute P(Vi,Vj) if they are connected in the graph via
one factor φ:

P(Vi,Vj) ∝ φ
∏

φi∈N(Vi)\φ

µφi→Vi

∏
φj∈N(Vj)\φ

µφj→Vj

∏
Vk∈N(φ)\{Vi,Vj}

µVk→φ

Multiply everything coming into Vi, Vj, and φ from elsewhere,
and normalize
If they aren’t neighbors, then for each value Vi = vi, compute

P(Vi = vi,Vj = vj) = P(Vi = vi | Vj = vj)P(Vj = vj)

using tools we have already established.

6.0411/16.420 Fall 2023 15

Handling loopy factor graphs

Exact inference is exponential in the number of variables in the
“tree width” (largest group of variables that has to be
considered jointly)

1. Cutset conditioning: pick a subset of nodes C such that, if
they were removed, the remaining graph would be a tree.
Iterate over assignments to C, do inference, and then
reassemble the answers.

2. Variable elimination: iteratively,
• Pick a variable V (efficiency depends on how you do this)
• Define new φ ′ =

∑
v

∏
φ∈N(V)φ

• Remove V and all φ ∈ N(V) from graph
• Add φ ′ (defined on all neighboring variables)
• Until you have a tree (or one big table!)

3. Junction tree alg : complicated!

6.0411/16.420 Fall 2023 16

Approximation methods

1. Keep iterating belief propagation. It might converge...
2. Sampling : later!

6.0411/16.420 Fall 2023 17

Next time

• Approximate inference via sampling
• Finding the most likely assignment
• Temporal models

6.0411/16.420 Fall 2023 18

Sum-Product Practice
P(C) =

∑
A

∑
B

P(A,B,C)

= 1/Z
∏
i

µfi→q

µf1→C(C) =
∑
A

φf1(C,A)

µf2→C(C) =
∑
A

φf2(B,A)

• Suppose

φf1(C,A) =


A C φf1(A,C)
T T 0.05
T F 0.45
F T 0.45
F F 0.05



Then

µf1→C =

C µ

T .5
F .5



• Suppose

φf2(B,A) =


B C φf1(A,C)
T T 0.0
T F 0.5
F T 0.0
F F 0.5



Then

µf2→C =

C µ

T 0
F 1



• Which means

P(C) = (1/Z)(µf1→C × µf2→C)

= 1/Z

C µ

T .5
F .5

×
C µ

T 0
F 1

 =

C P(C)
T 0
F 1

 whereZ = 0.5

6.0411/16.420 Fall 2023 19

Sum-Product Practice
P(C) = 1/Z

2∏
i=1

µfi→C

µf1→C =
∑
A

φf1µA→f1

µA→f1 = 1

µf2→C =
∑
A

φf2µB→f2

µB→f2 = 1

µf3→A = f3

µA→f1 = µf3→A

µf1→C =
∑
A

f1 · µA→f1

µE→f4 = 1

µf4→B =
∑
E

f4 · µE→f4

µG→f5 = 1

µf5→B =
∑
G

f5 · µG→f5

µB→f2 = µf4→B · µf5→B

µF→f2 = 1

µf2→C =
∑
B,F

f2 · µB→f2 · µF→f2

P(C) ∝ µf1→C · µf2→C

6.0411/16.420 Fall 2023 20

Note that, to do the backward pass, you do not pass P(C) back out. So

µC→f1 = µf2→C. Similarly µC→f2 = µf1→C. And then

µf2→F =
∑
C,B f2 ·µC→f2 ·µB→f2 .

6.0411/16.420 Fall 2023 21

