
L10 – Introduction to Graphical Models

AIMA4e, 12.2-5, 13.1, 13.2.1 or KAlg 2.2-5
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What you should know after this lecture
• Framing of probabilistic inference problem
• How to model a distribution of variables as a factored

distribution
• How to represent a factored distribution as a graphical model
• How (and why) to multiply and marginalise out random

variables
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Probabilistic reasoning about
partially-specified world states

Factored states
Discrete-valued factors
Probability over possible
worlds!

Could have done planning in probabilistic domains first, but
the methods we develop now for talking about relationships
between random variables will be helpful when we come to
that.
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Probability reminder

Informal—but worth studying formally!
• P({ }) = 0
• P(S) = 1
• P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2)

• In general, P(E1 ∩ E2) , P(E1)P(E2)

• P(E1 | E2) = P(E1 ∧ E2)/P(E2)
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Probabilistic propositional inference

Given:
• Sample space S (possible worlds)
• Distribution pα over S (pmf or pdf)
• Query Q ⊂ S

What is Pα(Q)?

Pα(Q) =
∑

s∈M(Q)

pα(s)
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Adding information

Conditioning on an event E rules out all the other possible
worlds.

pα|E(s) =

{
pα(s)/Pα(E) if s ∈ E
0 otherwise
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Probabilistic inference

Given pα and Q and possible E, compute Pα|E(Q)

Stupidest possible algorithm:
• Enumerate s ∈ S

• accumulate pα|E(s) if s ∈M(Q)

Our goal: do this without enumerating S

Idea: use factored representation α to make compact
representation of pα, E, and Q!
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Factored representation

• Random variables V1, . . . ,Vn
• Each Vi has discrete domain of possible valuesΩVi
• Sample space is product S = ΩV1 × . . .×ΩVn
• Sample s ∈ S is (v1, . . . , vn) where vi ∈ Ωvi
• p is the joint distribution on V1, . . . ,Vn
• Can use a table α to represent p
• Use Boolean expressions over atoms V = v to represent Q

and E

6.0411/16.420 Fall 2023 8



Factored representation: example

• Random variables A,B,C
• DomainsΩ = {0, 1}

α =

a b c p((a,b, c))

0 0 0 0.10
0 0 1 0.20
0 1 0 0.05
0 1 1 0.05
1 0 0 0.30
1 0 1 0.05
1 1 0 0.15
1 1 1 0.10

What is Pα(A = 1 | B = 0 ∨ C = 0)
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Bayes Nets: Compact factored representation of p

Define a Bayesian network α :
• Random variables V1, . . . ,Vn
• Each Vi has discrete domain of possible valuesΩVi
• Directed acyclic graph G defined on nodes Vi
• Parents paG(Vi) : set of nodes Vj with edges (Vj,Vi) ∈ G
• For each Vi, a conditional probability table (CPT),

specifying P(Vi | parentsG(Vi))
• For every assignment v̄ to variables in paG(Vi)
• and every value v ∈ ΩVi

• specify P(Vi = v | paG(Vi) = v̄)

Then for an assignment s = (v1, . . . , vn)

pα(s) =
∏
i

P(Vi = vi | paG(Vi) = s[paG(Vi)])
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Classic example

• Non-monotonicity of probability
• What’s Pα(B = 1)?
• What’s Pα(B = 1 |M = 1)?
• What’s Pα(B = 1 |M = 1,E = 1)?
• How many params to specify the whole joint as a table?
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Explaining away
Consider the network

Battery -> Gauge <- FuelTank

Here are some CPTs:
Pr(B = 1) = 0.9

Pr(F = 1) = 0.9

Pr(G = 1 | B = 1,F = 1) = 0.8

Pr(G = 1 | B = 1,F = 0) = 0.2

Pr(G = 1 | B = 0,F = 1) = 0.2

Pr(G = 1 | B = 0,F = 0) = 0.1

• What is the prior that the tank is empty? Pr(F = 0) = 0.1
• What if we observe the fuel gauge and find that it reads

empty? Pr(F = 0 | G = 0) ≈ 0.257
• Now, what if we find the battery is dead?

Pr(F = 0 | G = 0,B = 0) ≈ 0.111 The probability that the
tank is empty has decreased! Finding that the battery is flat
explains away the empty fuel tank reading.6.0411/16.420 Fall 2023 12



Independence relations

Are we getting something for nothing?
• Independence of random variables: If
P(A = a,B = b) = P(A = a)P(B = b) for all
a ∈ Ωa,b ∈ Ωb, we say that A and B are independent:
A ⊥⊥ B.

• Conditional independence: If P(A = a,B = b | C = c,D =
d) = P(A = a | C = c,D = d)P(B = b | C = c,D = d) for all
a ∈ ΩA,b ∈ ΩB, c ∈ ΩC,d ∈ Ωd, we say that A and B are
conditionally independent given C and D, A ⊥⊥ B | C,D.

• Bayes nets get their compactness from independence
assumptions encoded in the graph.
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Graph structure encodes independence relations
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• Case 1: P(B|A),P(C|A) “outgoing” connection
• B ⊥⊥/C, but B ⊥⊥ C | A

• Case 2: P(B|A),P(C|B) “flow” connection
• C ⊥⊥/A, but C ⊥⊥ A | B

• Case 3: P(C|A,B) “incoming” connection
• A ⊥⊥ B, but A ⊥⊥/B | C

In general Vi ⊥⊥ Vj | E1, . . . ,EK if there are no paths from Vi to
Vj through outgoing or flow connections that are not blocked
by E or through an incoming connection that is enabled by E.
More about this when we get to factor graphs and Markov
blankets.
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Simple inference algorithm

Given a BN, we have a conceptually (but not computationally)
simple way to compute the joint

pα(s) =
∏
i

P(Vi = vi | paG(Vi) = s[paG(Vi)])

We can think of this as multiplying the CPTS in the Bayes net.
Informally:

Multiply(D1,D2)

1 π = table indexed byΩvars(D1)∪vars(D2)

2 for v̄ in π
3 π(v̄) = lookup(v̄,D1) · lookup(v̄,D2)
4 return π
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Multiplication example

Given CPTs, D1 = P(X2|X1) and D2 = P(X3|X1), defined over
different variable sets:

D1 =

X1 X2 P
T T 0.1
T F 0.9
F T 0.9
F F 0.1

D2 =

X1 X3 P
T T 0.9
T F 0.1
F T 0.1
F F 0.9

Multiply(D1,D2) =

X1 X2 X3 P
T T T 0.1× 0.9 = 0.09
T T F 0.1× 0.1 = 0.01
T F T 0.9× 0.1 = 0.09
T F F 0.9× 0.9 = 0.81
F T T 0.9× 0.9 = 0.81
F T F 0.9× 0.1 = 0.09
F F T 0.1× 0.1 = 0.01
F F F 0.1× 0.9 = 0.09

What is the meaning of this multiplication?
P(X2|X1)× P(X3|X1) = P(X2,X3|X1).
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Next time

• We would like to avoid computing the whole joint
distribution!!

• Algorithms whose complexity depends on the complexity
of the network (rather than the product of the domains of
all the variables)
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