L08 — Propositional Logic

AIMA4e: Required: 7.3,7.4,7.6.1;
For 16.420 MiniProj : 7.7
Suggested: 7.1,7.2,7.6.2,7.6.3

6.0411/16.420 Fall 2023

What you should know after this lecture

Definition of logic: syntax and semantics

What is logic good for?

Propositional logic

Logical inference

¢ Model-checking: enumerative and efficient
¢ Theorem proving (will do in detail next time)

6.0411/16.420 Fall 2023

Reasoning about partially-specified world states

Factored states
Boolean-valued factors

6.0411/16.420 Fall 2023

What is propositional logic and what is it good for?

e Assume a very large (for now, finite) set of possible states

¢ Representation is factored into of a set of Boolean state variables,
called propositions

¢ Language for specifying huge sets of states with short

descriptions (which ones depends on how we do the
formalization)

It is raining A\ Nick is at the beach

¢ Inference procedures for determining the truth of some
statement given the truth of others: semantics-preserving
syntactic manipulation. Domain independent!

6.0411/16.420 Fall 2023 4

Logic, in general

e possible worlds: set of all possible ways the world could be
(states of the environment)

¢ syntax: set of sentences that you can write down on paper;
compositionally defined

¢ semantics: relationship between syntactic sentences and sets of
possible worlds; also compositionally defined

e inference: ways of generating new syntactic expressions from
given ones, which

e preserve semantics,
e no matter what the semantics are!

6.0411/16.420 Fall 2023

Propositional logic syntax

propositional symbols: uppercase letters, True, False

¢ propositional symbols are sentences // Called “atoms”
e if « is a sentence, then —« is a sentence // negation
e if x and 3 are sentences, then
e 'V f3is a sentence // or
e o/ B is asentence // and
e o = [} is a sentence // implies
e & & fis a sentence / iff

literal: an atomic sentence or a negated atomic sentence

6.0411/16.420 Fall 2023 6

Propositional logic models

Can think of this in two steps:

1. Imagine a domain (set of possible worlds (environment states))
you’d want to describe (e.g. classrooms of students, or hiking
trips, or cars)

2. Assign a meaning of each propositional symbol to a subset of that
domain that is interesting or important to your problem: e.g.,

e P: there were more than 10 students
e Q: there were fewer than 20 students
¢ R: the lecturer was witty

For any given possible world and interpretation of the symbols, we
end up with

model: propositional symbols — truth value in {true, false} ‘

6.0411/16.420 Fall 2023 7

Propositional logic semantics

Model m satisfies sentence « if and only if one of the following holds:

« is True
o is a propositional symbol: m(«) = true
o = —f3: m does not satisfy {3
o = (B Vy): msatisfies B or m satisfies y
o = (B /\y): m satisfies p and m satisfies y
= (B = v): m satisfies —f or m satisfies y
o = (B & v): msatisfies B = vy and m satisfies y =

6.0411/16.420 Fall 2023

Logical terminology

¢ model: a mapping between objects in the syntax and objects in
the semantics; also called an interpretation

o satisfies: a model m satisfies a sentence « if o is true in m
e Sometimes (but not in our book) written m = «
¢ Sometimes we say m is a model of «
¢ Sometimes we say « holds in m
e M(w): set of all models of o
e entails: a sentence o entails sentence f3, « = (3, if and only if
M(e) € M(B)

e valid: a sentence is valid if it is satisfied in all models

¢ unsatisfiable: a sentence is unsatisfiable if it not satisfied in any
model

e gsatisfiable: a sentence is satisfiable if there is at least one model in
which it is satisfied

6.0411/16.420 Fall 2023 9

Entailment

A sentence « entails sentence 3, « = 3, if and only if

M(x) € M(B)

That is, no matter whether you're thinking about hiking trips or
classrooms or llamas, and what you think your symbols stand for,
any model that satisfies « will also satisfy 3.

6.0411/16.420 Fall 2023 10

Formalization practice

W: lecturer is witty

T: more than 10 students in class
e Z: students are asleep
¢ R: it’s raining
Statements:
1. If the lecturer is witty, there will be more than 10 students in class.
2. Unless the lecturer is witty, the students will be asleep.
3. More than 10 students will come to class only if it’s not raining.

6.0411/16.420 Fall 2023 11

More formalization practice

AA: Alice admits; BA: Barbara admits; AP: Alice prison; BP Barbara
prison

1. If both Alice and Barbara admit to having hacked into
government computers, then neither of them will receive a
prison sentence.

2. But if either of them admits to having hacked into a computer
while the other doesn’t, she will be sentenced to imprisonment
while the other won't.

3. So unless both don’t admit the deed, it cannot happen that both
receive a prison sentence.

6.0411/16.420 Fall 2023 12

Inference

¢ Given some information (observations) (&) what can I conclude
must be true about the world (3)?

e Does « entail 3??

Note that we can always take several observed sentences oy, ..., &x
and make them into a single sentence

ot AN N\ o

6.0411/16.420 Fall 2023 13

Proof

Generally, a proof procedure takes two sentences, x and 3, and tells
you whether it can prove 3 from «:

akFp

Proof procedure is
e sound iff for all «, 3, if « F 3 then & =
e complete iff for all &, 3, if & = 3 then ot - 3

Completely in syntax-land!

6.0411/16.420 Fall 2023

Stupidest possible propositional inference procedure

Recall that a model is an assignment of truth values to propositional
symbols; we know the set of symbols for any given domain.

STUPID-ENTAILMENT(&, [3)

for each possible model m:
if saTisFies(m, «) and not saTISFIES(m, 3):
return False
return True

How many possible models are there?
When would this be especially painful?

6.0411/16.420 Fall 2023 15

Reduction of proof to satisfiability testing

Recall that:
¢ A sentence is unsatisfiable if it is not true in any model
o If o A —f is unsatisfiable then « = 3.

Why??

Sometimes it’s easier to think up algorithms for testing satisfiability
(SAT). Two strategies:

¢ Backtracking (DPLL)
¢ Local search (e.g. simulated annealing, WalkSat, etc.)

6.0411/16.420 Fall 2023 16

Clausal form (conjunctive normal form (CNF))

Many provers first convert all of their input to clausal form, which
makes subsequent operations easier.

1. Turn all instances of x < P into (x = B) A\ (f = o)
2. Turn all instances of « = f into (—aV 3)

3. Push negations all the way “in” using deMorgan’s laws:
“(aAB) = (raV=p)and ~(aV B) = (~x A =p)
4. Distribute V over A: convert «V (B Ay) to (xV B) A (xVy)
You end up with a formula of the form

(AVBV. . IJAFVEV..IA...A(eVIV..)

where all the components are literals (negated or non-negated atoms).
Elements of the form («V 3V ...) are called clauses.

6.0411/16.420 Fall 2023 17

DPLL: SAT via smart backtracking

¢ Called “model checking” because it is operating at the level of
models (assignments of values to variables).

¢ Assume procedure HoLDs(C, m) which takes a clause C and
partial model m and returns one of {True, False, None}. Return
None when truth value of the clause can’t be determined given
bindings in m.

e Initial call DPLL(C, S,{ }) where C and S are the clauses and
propositional symbols in our formula.

e A symbol p is pure in a sentence if it only appears as p or only
appears as —p.

¢ A clause c is a unit clause in a sentence if ¢ contains a single
literal, p.

6.0411/16.420 Fall 2023

DPLL: SAT via smart backtracking

DPLL(C, S, m)

if Vc € C. norps(c, m) = True return True

if 3¢ € C. vorps(c, m) = False return False

P, V := FIND-PURE-SYMBOL(S, C, m)

if p return DPLL(C, S/{p}, mU{p =v})

P, V := FIND-UNIT-CLAUSE(C, m)

if p return DPLL(C, S/{p}, mU {p =v})

return DPLL(C, S[1 :], m U{S[0] = True}) or
DPLL(C, S[1], mU{S[0] = False})

Theorem
DPLL is sound and complete.

So, DPLL(crause-rForM(x /A —f3)) = False iff « = 3.

6.0411/16.420 Fall 2023

SAT solving in practice

Applications of SAT solvers:

¢ automated testing of circuits

e product configuration

¢ package management

e computational biology

e cryptanalysis

e particle physics

e solving many graph problems . . .
https://www.cs.utexas.edu/ "isil/cs389L/lecture4-6up.pdf

6.0411/16.420 Fall 2023

20

Next time

e Propositional theorem proving

6.0411/16.420 Fall 2023

21

