
L07 – Non-Deterministic Domains

AIMA4e: Required: 4.3, 4.4

6.0411/16.420 Fall 2023 1

What you should know after this lecture

• We can design robust agents for non-deterministic domains
• If actions are non-deterministic (but observable),

do and-or contingent planning
• If you don’t know the state exactly, and won’t get observations,

do conformant planning in belief space
• If both things occur, you can do conditional planning in belief

space!

6.0411/16.420 Fall 2023 2

Path-search problems with uncertainty

Atomic states
May only know an initial state set
Transitions may only specify a
resulting state set

6.0411/16.420 Fall 2023 3

Vacuum world doesn’t suck!

Example environment from AIMA:
• Robot in grid world has a vacuum cleaner
• Each cell in grid has dirt or not
• Robot can suck (with vacuum) or move left, right, up, or down
• Want the room to be completely clean

If completely observable and deterministic, then we can solve easily
using min-cost-path search. But what if:
• The vacuum or the robot does not always work as expected?
• The robot does not know whether the grid cells are dirty (or

potentially even where it is)?

6.0411/16.420 Fall 2023 4

Non-Deterministic Actions

This is sometimes known as the FOND (fully-observable
non-deterministic) planning setting.
• Assume that the robot can always correctly observe the current

world state
• But, when it takes an action, there is a set of possible outcomes.
• After each action, it can observe the result and decide what to do

Problem formulation:
• Given (S,A, s0, T̃ ,G,C) where T̃ : S×A→ Powerset(S)
• Find a contingent (conditional) plan in the form of a decision tree.
• Measuring the cost of a solution is tricky: could be maximum or

average over the costs of the possible paths.

6.0411/16.420 Fall 2023 5

And/Or search

Search tree with alternating layers of node types:
• Or nodes : like our traditional search-tree nodes, where we get to

pick an action
• And nodes : there are several possible resulting states and we

have to find a plan for all of them.
Resulting plan is a tree with
• Internal nodes labeled with actions
• Branches labeled with states (that could possibly occur as a result

of the action)
• Terminal leaf nodes indicating plan success.

There are optimal AO search methods (e.g. AO∗) but we will just look
in detail at a simple one.

6.0411/16.420 Fall 2023 6

Depth-first And/Or search

AO-DFS(s0, (A, T̃ ,G))

1 return or-search(s0, [], (A, T̃ ,G))

or-search(s, path, (A, T̃ ,G))

1 if s ∈ G: return success-leaf()
2 if s ∈ path: return None // Found a cycle
3 for a ∈ A:
4 plan dict = and-search(T̃(s,a), path + [s], (A, T̃ ,G))
5 if plan dict , None: return tree-node(a, plan dict)
6 return None

and-search(states, path, (A, T̃ ,G))

1 plan dict = { }

2 for s ∈ states:
3 plan = or-search(s, path, (A, T̃ ,G))
4 if plan = None: return None
5 plan dict[s] = plan
6 return plan dict
6.0411/16.420 Fall 2023 7

What about cycles?

Sometimes, you just need cycles! Throw balls at target until you hit it!

• In line 2 of or-search, return a special cycle-leaf(s) node
• In execution, if you hit a cycle-leaf(s), trace up your path to find

state s and begin executing from there.

6.0411/16.420 Fall 2023 8

Non-observability

What if the robot does not know what state it is in and can’t gain any
information? We’ll call this UOND (un-observable non-deterministic)
planning.
• Could be uncertainty about the initial state
• Could be additional non-determinism in transitions that increase

uncertainty
• If no possibility for observations, then we can try to find a

conformant plan, which is guaranteed to succeed for all possible
initial states and non-deterministic outcomes

• Do this through state-space search where now our states are
belief states, which are sets of original states.

6.0411/16.420 Fall 2023 9

Reducing UOND planning to belief-space search

Given a non-observable-path problem (S,A, T̃ ,G,C,So) where T̃ is
non-deterministic as above and S0 ⊂ S is the set of possible starting
states, we can generate a standard min-cost-path problem
(B,A ′, T ′,G ′,C,b0) so that solution to the min-cost-path problem is a
solution to the original non-observable problem:
• B = powerset(S) // Set of subsets of S
• A ′ = A

• b0 = S0 // Single belief state is a set of env states
• T ′(b,a) =

⋃
s∈b T(s,a)

• G ′ = {b | b ⊆ G} = powerset(G)

• C ′(b,a,b ′) can really only depend on a

Important to note that even though transition on states T̃ is
non-deterministic, the belief-space transition function T ′ is
deterministic.

6.0411/16.420 Fall 2023 10

Adding observations

If we can make some observations, then we get the POND (partially
observable non-deterministic) planning setting.

• Finite observation set O
• perception function O : S→ O

It tells us what we will see in each state. For example, a vacuum robot
with a local dirt detector might have O = {clean, dirty} and perception
function telling it about its current location.

Includes completely observable and completely unobservable cases.
How?

Use it to do a belief update:
• Given current belief (set of possible states) S and an actual

observation o, what should we believe?
• Rule out states that could not have generated o:
• Update(b,o) = {s ∈ b | O(s) = o}

6.0411/16.420 Fall 2023 11

Searching in PO environments

And/Or search in belief space! Have to do and branches on the
possible observations. Given non-deterministic, partially observable
problem (S,A,O,S0, T̃ ,O,G,C) we can generate a non-deterministic
observable problem (solvable by AO search):

• B = powerset(S) // Set of subsets of S
• A ′ = A

• b0 = S0

• T̃ ′(b,a) = {Update(T̃(b,a),o) | o ∈ possible-percepts(T(b,a))}
• G ′ = {b | b ⊆ G} = powerset(G)

• C(b,a,b ′) can really only depend on a

What observations could we possibly get in belief state b?

possible-percepts(b) = {O(s) | s ∈ b}

6.0411/16.420 Fall 2023 12

Agent for partially observable environment

• Initial belief b = b0

• Make AO plan
• Take action a at root note
• Receive observation o from environment
• Update b = Update(T̃(b,a),o)
• Follow o branch in plan to get next action
• ...

Idea for later: In receding-horizon control, you can get away with
making an approximate plan, and then replanning after every belief
update.

6.0411/16.420 Fall 2023 13

Next time

• Propositional logic

6.0411/16.420 Fall 2023 14

