L06: Planning in continuous spaces

AIMA4e: Chapter 4.2; 26.5.1, 26.5.2 26.5.4 (skim traj opt part–don't panic!)

What you should know after this lecture

- Completely general planning in continuous spaces is very hard.
- Local search methods (gradient-based or "evolutionary") are general-purpose but suffer badly from local optima.
- In geometric problems, such as robot motion planning, there are good solutions, particularly sampling-based strategies.

Continuous path-search problems

Factored, continuous states, usually in \mathbb{R}^n Smoothness of some kind in T

Problem formulation

- We will assume discrete decision epochs (continuous time important but we won't study it)
	- State set: $S \subset \mathbb{R}^D$ can include angles, positions, velocities, etc. (be careful with angles!!)
	- Initial state: $s_0 \in \mathcal{S}$
	- Action set: A
		- If discrete, then use regular forward path search
		- Generally, in some other space $A \subset \mathbb{R}^A$
		- Important common special case: $A = S$
	- Transition model: $T : S \times A \rightarrow S$
		- Often T is smooth (differentiable)
		- A very common special case when $A = S$ is discontinuous: $T(s, a) = a$ except when (s, a) is "blocked" in which case $T(s, \alpha) = s$
	- Goal set: G ⊂ S
	- Cost function $C: S \times A \rightarrow \mathbb{R}$
- We need to find next action to take. Sometimes the number of steps is fixed, sometimes not.
- Find plan a_0, \ldots, a_{k-1} from s_0 to some state in G such that $T(s_0, a_0) = s_1, \ldots, T(s_{k-1}, a_{k-1}) = s_k$ and $s_m \in G$

 $\mathcal{L}_{\text{total 1/16.420 fall 202}$ to minimize $\sum_i C(s_i, a_i)$ but may only approximate.

Trajectory optimization

Assume target $q \in S$ and additional cost $l_f(s_k, q)$ for reaching final state s_k . Often $l_f(s_k, q) = ||s_k - q||_2$. Direct Shooting

• Choose a_0, \ldots, a_{k-1} to minimize

$$
l_f(s_k,g)+\sum_{j=0}^{k-1}c(\alpha_j)
$$

where $s_k = T(T(\ldots T(T(s_0, a_0), a_1) \ldots), a_{k-1})$

• Can be hard to optimize–gradient is weak

Direct Transcription

- Add explicit variables to optimization problem for s_i
- Choose $a_0, \ldots a_{k-1}, s_1, \ldots, s_k$ to minimize

$$
l_f(s_k,g)+\sum_{j=0}^{k-1}c(\alpha_j)+l(T(s_j,\alpha_j),s_{j+1})
$$

 Ω ptimize using gradient methods. Local optima can be bad.

Robot motion planning: abstract formulation

An important special case with algorithms that exploit its structure

- Let S be the set of configurations of a robot
- Assume you are given a map of obstacles in the 3D world
- You want to find a collision-free path between a starting and ending state of the robot
- Let $A = 8$ and assume
	- $T(s, s') = s'$ if there are no obstacles on a (often linear) path between s and s'
	- $T(s, s') = s$ otherwise (not worth considering)

This formulation is reasonable for holonomic systems that can directly make incremental motions in all dimensions of S. Needs to be extended to handle, e.g., cars.

Robot motion planning, more concretely

- Consider a robot that's made up of a collection of rigid bodies with joints between them
	- Joint types: rotational, prismatic (sliding), free (mobile robot)
	- Joint limits: some rotational joints can go all the way around, but generally there are limits
	- Ignore dynamics, but we still have to think about what "motors" we have: differential drive vs omni-directional robot base
- Environment is some bounded 2D or 3D space (called the "workspace") with some immovable obstacles in it.
- configuration is a vector of positions of all the joints $q \in Q$
- motion planning problem: given two configurations q_s and q_g , is there collision-free trajectory?
	- trajectory: continuous function $f : [0, 1] \rightarrow Q$
	- $f(0) = q_s$ and $f(1) = 1_q$
	- collision-free: for all values of $f(t)$, if the robot is in that configuration it does not collide with any obstacle (or itself)

Configuration space

- It's hard to think about and formalize a whole robot moving around in the 2D or 3D workspace.
- Instead, think about a point moving around in the space of possible robot configurations (cspace).
- Let $\mathcal{C}_{\text{free}}$ be the set of robot configurations $q \in \mathcal{Q}$ such that if the robot is in that configuration it does not collide with the environment or itself.
- Our problem, then, is to find a trajectory for a point that goes between q_s and q_g and stays entirely in $\mathcal{C}_{\text{free}}$.
- Unfortunately, it can be hard to explicitly characterize the shape of C_{free} , which depends both on the obstacles in the environment and the kinematics (shapes and joints) of the robot.

Workspace vs Configuration Space

[fig from Jyh-Ming Lien]

Two-joint robot arm C-space

Searching configuration space

We focus on piecewise linear paths in configuration space. Now instead of finding a whole continuous function, we just have to find some set of points that we can connect up without collisions. Three strategies:

- Exact: Construct an exact decomposition of $\mathcal{C}_{\text{free}}$ into traversible regions and find a path that makes linear moves between them.
	- Complete algorithms exist.
	- Drawbacks: Exponential in d, the number of *degrees of freedom* of the robot. Difficult to implement.
- Grid-based: Min-cost path search in a grid.
	- Action space: small fixed displacements of each joint within C_{free}
	- Goal set: configurations that are close to q_q (cannot hit it exactly!)
	- Heuristic! Distance in configuration space. Can be tricky.
	- Drawbacks: Grid size is exponential in degrees of freedom. Needs fine discretization if gaps between cspace obstacles are small (increases running time).
- Sample-based: Most widely used.
	- Probabilistically complete.
- Drawback: Narrow-passage problem. 6.0411/16.420 Fall 2023 11

Sample-based method: Probabilistic Road Map (PRM)

- Randomly sample configurations
- Discard samples that are in collision
- Connect near neighbors via straight-line segments
- Discard segments that are in collision
- Connect start and goal to resulting graph and search

```
BUILD-PRM(q_s, q_a, K, \delta)V = {q_s, q_g}; E = \{\}2 for k = 1 K
3 q = \text{SAMPLE-CONE}4 if is-collision-\text{FREE}(q): V.\text{ADD}(q)<br>5 for (a_{\alpha}, a_{\alpha}) \in V \times V:
    for (q_a, q_b) \in V \times V:
6 path = GENERATE-LINEAR-PATH(q_a, q_b)<br>7 if is-collision-free(path): E app(pat
           if IS-COLLISION-FREE(path): E.ADD(path)
8 return GRAPH-SEARCH(V, E, q_s, q_g)
```
PRM iterations

 $\overline{2}$

4

Image source: E. Plaku

6.0411/16.420 Fall 2023 13

Rapidly expanding random trees (RRT)

Sample-based algorithm that is easy to implement and reasonably effective

- Randomly sample configurations
- Try to connect via a linear collision-free path to closest (need a distance metric!) configuration in the tree
- Better if bi-directional!
- Not optimal—need to "shortcut" and smooth

```
BUILD-RRT(q_s, q_g, K, \delta)T = T_{REE}(q_s)2 for k = 1..K3 q_{\text{rand}} = \text{rand}-\text{conv}(1) // Sample q_{\text{q}} occasionally
4 q_{near} = NEAREST-VERTEX(q_{rand}, T)<br>5 success, path = EXTEND-PATH(q_{neg})
         success, path = EXTEND-PATH(q_{near}, q_{rand}, \delta)6 for i = 1.len(path) – 1:
7 \qquad \qquad T.add-edge(path[i], path[i + 1])
8 if success: return T.path(qs, qg)
```
RRT iterations

Image source: H. Choset, CMU

Voronoi Bias is key to RRT

• Tree vertices near large unexplored regions are more likely to be extended.

$\frac{\text{http://msl.cs.uiuc.edu/rrt/galley.html}}{16.0411/16.420 \text{ Fall }2023}$

RRT* - asymptotically optimal RRT

• Swap in new point as parent for nearby vertices if it leads to shorter path than the path through their curret parent

RRT*

Source: Karaman and Frazzoli

Local optimization

Alternatively, we can start with a path (still defined as linear interpolation between waypoints that is not legal, and try to improve it!

- Fix K waypoints in cspace: q_1, \ldots, q_K
- Initialize (e.g. a straight line)
- Pick objective (cost) function

$$
\sum_{k=1}^{K-1} \max\text{-}penetration\text{-}depth(q_k, q_{k+1}) + \lambda dist(q_k, q_{k+1})
$$

- Minimize using gradient-based techniques
- Can have a lot of trouble with local optima
- Less craziness in path, if it works

Next time

• Uncertainty!