
L04: Constraint Satisfaction and Factored
Planning

AIMA4e: Chapter 6; Chapter 11.1–11.3

6.0411/16.420 Fall 2023 1



What you should know after this lecture

• Advanced CSP solution strategies:
• Learning within a problem
• Local search

• Basic idea of factored planning

6.0411/16.420 Fall 2023 2



Factored states and information

Factored, discrete states
Factored “observations” as constraints

Inference about state based on certain observations
• State space is factored into a set of state variables
• Observations are constraints on (pieces of information

about) the values of those state variables
• Our objective is to figure out one or more possible states

that are consistent with the observations.
Inference doesn’t increase our information about the
underlying state—just processes it into a more useful form

6.0411/16.420 Fall 2023 3



Constraint-satisfaction problem: formal definition

• X is a set of variables {X1, . . . ,Xn}
• D is a set of domains {D1, . . . ,Dn}, where Di = {x1, . . . , xk}

is the set of possible values of Xi
• C is a set of constraints:

• scope : a tuple of variables
• relation : a relation specifying tuples of values that this

tuple of variables can legally take on

Define:
• assignment : mapping from variables to values
• partial assignment: only provides values for some variables
• consistent assignment : partial assignment that doesn’t

violate any constraints
• solution : complete assignment that doesn’t violate any

constraints
6.0411/16.420 Fall 2023 4



Forward checking

fc(X,a):
for Xi ∈ unassigned-var(a) ∩ neighbors(X)

revise(Xi,X)
if Di = { }: return ’failed’

backtrack-fc(a)

if complete(a): return a
X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x}); fc(X,a)
r = backtrack(a)
if r , ’failed’: return r
remove(a, {X = x}); undo-fc(X,a)

return ’failed’
6.0411/16.420 Fall 2023 5



Arc consistency

Can work harder to be sure that all arcs are consistent.
• See AC-3 alg in book.
• Roughly, keep doing revise until no domains change

further.
• Completely solves some problems.
• bt-ac3 often more expensive than bt-fc.
• Can extend the idea to making k-tuples (for k > 2) of

variables consistent.

6.0411/16.420 Fall 2023 6



Backjumping

Sometimes we have made a poor initial choice, but end up with
endlessly considering assignments to irrelevant variables.
• Whenever a dead-end occurs at variable X, backtrack to

the “most recent” variable that is connected to X in the
constraint graph.

• Can be very helpful!

� Requires careful bookkeeping to be sure all the right
assignments and inferences are undone.

AIMA4e asserts that any assignment that is pruned by
backjumping will also be pruned by forward-checking. Prove it
to yourself!

6.0411/16.420 Fall 2023 7



Learning while searching

Idea: find assignments that are no good: not simply
inconsistent themselves, but such that there is no possible way
to assign the rest of the variables.
• conflict set for a variable X: Set of variables X ′ and values
x ′ such that there is no assignment to X consistent with
X ′ = x ′. It’s minimal if no subset of it is a conflict set.

• Once you discover a conflict set, don’t ever try it again!
• Add a constraint that forbids this assignment and keep

going. (But note that it’s non-binary).
Identifying and recording only conflict sets which are known to
be minimal constitutes deep learning. – Dechter, AIJ, 1990

6.0411/16.420 Fall 2023 8



Local search: a very different strategy!

• Start with a complete assignment, with constraint viols
• Until you reach a satisfying assignment: pick a variable

and assign a new value.
Guidance helps! Min-conflicts heuristic:
• Randomly choose a variable that is in conflict (violating

some constraint)
• Assign it the value that will minimize the total number of

constraints violated.
Simulated annealing:
• Propose a move (variable and value) at random.
• If it reduces the number of conflicts, accept it.
• If it does not, accept anyway, with probability e−∆/T

where ∆ is number of conflicts added and T is a
temperature parameter that is decreased over time.

Min conflict not guaranteed to find solution; simulated
annealing is (eventually)6.0411/16.420 Fall 2023 9



Message passing

When your constraint (hyper)graph is a tree (has no loops) then
there’s a super-cool algorithm!
• Pick any node to be root
• Construct a topological sort: every node is in the list after

its parent.
• Starting at the end of the list, do, for each X
revise(parent(X),X)

• Each X is left with a domain such that any value in the
remaining domain is consistent with the whole subtree
beneath it.

• After this O(n) processing, select any value at root, and
work forward selecting any consistent value. No
backtracking needed.

6.0411/16.420 Fall 2023 10



But! What if you don’t have a tree?

Two strategies:
• Make a tree by combining some variables into

super-variables with the product of their domains.
• Find a cutset: a set of variables, such that if they were

removed, the remaining (hyper)graph would be a tree.
• Do backtracking on values of the variables in the cutset
• Given an assignment to those variables, do

message-passing to try to find assignment to the rest.

We will see these algorithms again in probabilistic inference!

6.0411/16.420 Fall 2023 11



Factored states and information

Factored, discrete states
Compact, sparse representation of T
Construct heuristics via relaxation

6.0411/16.420 Fall 2023 12



Making plans in complex domains

• We have seen how to frame planning for an agent as
searching for a path through a state space.

• We have also seen how to describe states using a factored
representation in terms of variables and values

• Can we combine them? Yes, with the following
advantages:
• Factoring state representations lets us compactly describe

the goals and transition model
• Factored structure enables a lot of relaxations that lead to

powerful domain independent heuristics

6.0411/16.420 Fall 2023 13



“Classical planning” framework

• Make some structural assumptions about the domain
• sparsity of effect: any action taken by an agent doesn’t

change many aspects of the environment state
• locality of dependence: what effects an action will have

depend only on a few aspects of the environment state
• Leads us to a special-purpose (but still domain

independent) representation language for describing S, A,
T , and G that
• Is highly compact (and therefore learnable from few

samples)
• Can be used to plan efficiently

• Language is called strips; standardized syntax and
variations in pddl (planning domain description language)

6.0411/16.420 Fall 2023 14



Planning domain description language

For now we are following syntax from AIMA—we’ll show later what the
“real” syntax is like.

Domain specification
• predicates: symbols, like On or Airport
• object variables: symbols, like x
• fluents: atoms, like On(x,y)
// These are the factors of our state representation

• operators: schematic, factored, description of T , like

Unload(obj, plane, loc)
• preconditions: Aboard(obj, plane), At(plane, loc)
• effect: At(obj, loc), ¬Aboard(obj, plane)

6.0411/16.420 Fall 2023 15



Planning domain description language

A ground fluent is a predicate applied to a tuple of constant
symbols.

Problem specification
• constants: symbols, like blockA or 747 e35b2
• initial state: set of ground fluents that are true in the initial

state; assume all other ground fluents are false.
(This is often called the closed world assumption.)

• goal: conjunction (set) of ground fluents

6.0411/16.420 Fall 2023 16



Path-search problem given PDDL domain and problem

Mapping this back into the representation we used for path
search problems
• S:

• Plug all combinations of constants into all predicates to get
all ground fluents, like Aboard(blockA, 747 e35b2)

• A state is an assignment of True or False to each ground
fluent.

• It is often most efficient to represent a state as the set of
ground fluents that have the value True.

• A: Plug all combinations of constants into all operators to
get all ground operators. These are the possible actions.

• G ⊂ S: All states in which all ground fluents in the goal are
assigned to True

• s0: The initial state, set of ground fluents that are true
initially

6.0411/16.420 Fall 2023 17



State transition function

Define T(s,a) where
• s : set of true ground fluents
• a : ground operator instance

as follows:
• If preconditions(a) ⊆ s then

T(s,a) = s− del(a) ∪ add(a)

where add(a) are positive fluents in effects(a) and del(a) are
negated fluents in effects(a)

• Otherwise, the operator a is not applicable in state s, and
we can think of it as having no effect, so

T(s,a) = s

6.0411/16.420 Fall 2023 18



Planning algorithms

Given a domain and problem description, how do we find a
plan?
• Forward best-first search with heuristics that take

advantage of the structured representation
• Regression (or backward chaining), works backwards from

the goal, states in the search space are actually sets of
fluents representing sub-goals (not environment states)

• Reduction to propositional satisfiability.

6.0411/16.420 Fall 2023 19



Why is this formalism useful?

• The domain description is independent of the particular
universe of objects (constants)

• Similar in some ways to a graph neural network (you can
think of nodes for fluents in the problem instance; the
operator description specifies connectivity (which other
fluents the new value of a fluent depends on) and
parameters (what those fluent values actually are.)

• Generalizes broadly
• Takes advantage of sparsity

• The effects of most actions don’t depend on most factor
values

• Relatively few factors are affected by any action

• Provides leverage for defining effective
domain-independent heuristics

6.0411/16.420 Fall 2023 20



Next time

• Powerful domain-dependent heuristics
• Actual PDDL syntax
• If time, Iterative Width planning

6.0411/16.420 Fall 2023 21


