L04: Constraint Satisfaction and Factored
Planning

AIMAA4e: Chapter 6; Chapter 11.1-11.3

6.0411/16.420 Fall 2023



What you should know after this lecture

e Advanced CSP solution strategies:

¢ Learning within a problem
e Local search

e Basic idea of factored planning

6.0411/16.420 Fall 2023



Factored states and information

Factored, discrete states
Factored “observations” as constraints

Inference about state based on certain observations
e State space is factored into a set of state variables

e Observations are constraints on (pieces of information
about) the values of those state variables

e Our objective is to figure out one or more possible states
that are consistent with the observations.

Inference doesn’t increase our information about the
underlying state—just processes it into a more useful form

6.0411/16.420 Fall 2023 3



Constraint-satisfaction problem: formal definition

e X is a set of variables {X1,..., X}

e Disasetof domains{D1,...,Dnx}, where Dy = {x1,...,xx}
is the set of possible values of X;

e Cis a set of constraints:

e scope : a tuple of variables
e relation : a relation specifying tuples of values that this
tuple of variables can legally take on

Define:
e assignment : mapping from variables to values
e partial assignment: only provides values for some variables

e consistent assignment : partial assignment that doesn’t
violate any constraints

e solution : complete assignment that doesn’t violate any

constraints
6.0411/16.420 Fall 2023 4



Forward checking

Fc(X, a):

for X; € UNASSIGNED-VAR(a) N NEIGHBORS(X)
REVISE(X{, X)
if Dy ={ }: return "failed’

BACKTRACK-FC(q)

if coMPLETE(a): return a
X = UNASSIGNED-VAR(Q)
for x € DOMAIN-VALUES(X):
if consisTENT(a,{X = x}):
EXTEND(a, {X = x}); rc(X, a)
T = BACKTRACK(Q)
if r # 'failed”: return r
REMOVE(a, {X = x}); unpo-rc(X, a)

return 'failed’
6.0411/16.420 Fall 2023



Arc consistency

Can work harder to be sure that all arcs are consistent.
e See AC-3 alg in book.

¢ Roughly, keep doing rEvISE until no domains change
further.

e Completely solves some problems.
¢ BT-AC3 often more expensive than BT-EC.

e Can extend the idea to making k-tuples (for k > 2) of
variables consistent.

6.0411/16.420 Fall 2023



Backjumping

Sometimes we have made a poor initial choice, but end up with
endlessly considering assignments to irrelevant variables.
e Whenever a dead-end occurs at variable X, backtrack to
the “most recent” variable that is connected to X in the
constraint graph.

e Can be very helpful!

Requires careful bookkeeping to be sure all the right
assignments and inferences are undone.

AIMA4e asserts that any assignment that is pruned by
backjumping will also be pruned by forward-checking. Prove it

to yourself!

6.0411/16.420 Fall 2023 7



Learning while searching

Idea: find assignments that are no good: not simply
inconsistent themselves, but such that there is no possible way
to assign the rest of the variables.

e conflict set for a variable X: Set of variables X’ and values
x’ such that there is no assignment to X consistent with
X’ = x'. It's minimal if no subset of it is a conflict set.

¢ Once you discover a conflict set, don’t ever try it again!

¢ Add a constraint that forbids this assignment and keep
going. (But note that it’s non-binary).
Identifying and recording only conflict sets which are known to
be minimal constitutes deep learning. — Dechter, AIJ, 1990

6.0411/16.420 Fall 2023 8



Local search: a very different strategy!

e Start with a complete assignment, with constraint viols
e Until you reach a satisfying assignment: pick a variable
and assign a new value.

Guidance helps! Min-conflicts heuristic:

e Randomly choose a variable that is in conflict (violating
some constraint)

e Assign it the value that will minimize the total number of
constraints violated.

Simulated annealing;:

e Propose a move (variable and value) at random.

e If it reduces the number of conflicts, accept it.

e If it does not, accept anyway, with probability e=4/
where A is number of conflicts added and T is a
temperature parameter that is decreased over time.

Min conflict not guaranteed to find solution; simulated
anmealing2is (eventually)

T



Message passing

When your constraint (hyper)graph is a tree (has no loops) then
there’s a super-cool algorithm!
¢ Pick any node to be root
e Construct a topological sort: every node is in the list after
its parent.
e Starting at the end of the list, do, for each X
REVISE (parent(X), X)

e Each X is left with a domain such that any value in the
remaining domain is consistent with the whole subtree
beneath it.

e After this O(n) processing, select any value at root, and
work forward selecting any consistent value. No
backtracking needed.

6.0411/16.420 Fall 2023 10



But! What if you don’t have a tree?

Two strategies:

e Make a tree by combining some variables into
super-variables with the product of their domains.

e Find a cutset: a set of variables, such that if they were
removed, the remaining (hyper)graph would be a tree.

¢ Do backtracking on values of the variables in the cutset
¢ Given an assignment to those variables, do
message-passing to try to find assignment to the rest.

We will see these algorithms again in probabilistic inference!

6.0411/16.420 Fall 2023 11



Factored states and information

Factored, discrete states
Compact, sparse representation of T
Construct heuristics via relaxation

6.0411/16.420 Fall 2023 12



Making plans in complex domains

e We have seen how to frame planning for an agent as
searching for a path through a state space.

e We have also seen how to describe states using a factored
representation in terms of variables and values

e Can we combine them? Yes, with the following
advantages:

¢ Factoring state representations lets us compactly describe
the goals and transition model

e Factored structure enables a lot of relaxations that lead to
powerful domain independent heuristics

6.0411/16.420 Fall 2023



“Classical planning” framework

e Make some structural assumptions about the domain
e sparsity of effect: any action taken by an agent doesn’t
change many aspects of the environment state
e locality of dependence: what effects an action will have
depend only on a few aspects of the environment state

¢ Leads us to a special-purpose (but still domain
independent) representation language for describing 8, A,
T, and G that
e Is highly compact (and therefore learnable from few
samples)
¢ Can be used to plan efficiently

e Language is called sTrips; standardized syntax and
variations in PppL (planning domain description language)

6.0411/16.420 Fall 2023 14



Planning domain description language

For now we are following syntax from AIMA—uwe’ll show later what the
“real” syntax is like.

Domain specification

e predicates: symbols, like On or Airport
e object variables: symbols, like x

e fluents: atoms, like On(x,y)
// These are the factors of our state representation

e operators: schematic, factored, description of T, like

Unload(obj, plane, loc)

o preconditions: Aboard(obj, plane), At(plane, loc)
o effect: At(obj, loc), —Aboard(obj, plane)

6.0411/16.420 Fall 2023 15



Planning domain description language

A ground fluent is a predicate applied to a tuple of constant
symbols.

Problem specification
e constants: symbols, like blockA or 747 _e35b2
e initial state: set of ground fluents that are true in the initial
state; assume all other ground fluents are false.
(This is often called the closed world assumption.)

e goal: conjunction (set) of ground fluents

6.0411/16.420 Fall 2023 16



Path-search problem given PDDL domain and problem

Mapping this back into the representation we used for path
search problems
o &
¢ Plug all combinations of constants into all predicates to get
all ground fluents, like Aboard(blockA, 747 e35b2)
e A state is an assignment of True or False to each ground
fluent.
e It is often most efficient to represent a state as the set of
ground fluents that have the value True.

e A: Plug all combinations of constants into all operators to
get all ground operators. These are the possible actions.

e G C 8: All states in which all ground fluents in the goal are
assigned to True

e so: The initial state, set of ground fluents that are true
initially

6.0411/16.420 Fall 2023 17



State transition function

Define T(s, a) where
e s: set of true ground fluents
e a: ground operator instance
as follows:

o If preconditions(a) C s then
T(s,a) =s—del(a) Uadd(a)

where add(a) are positive fluents in effects(a) and del(a) are
negated fluents in effects(a)

e Otherwise, the operator a is not applicable in state s, and
we can think of it as having no effect, so

T(s,a)=s

6.0411/16.420 Fall 2023 18



Planning algorithms

Given a domain and problem description, how do we find a
plan?
e Forward best-first search with heuristics that take
advantage of the structured representation
e Regression (or backward chaining), works backwards from
the goal, states in the search space are actually sets of
fluents representing sub-goals (not environment states)

e Reduction to propositional satisfiability.

6.0411/16.420 Fall 2023 19



Why is this formalism useful?

e The domain description is independent of the particular
universe of objects (constants)

e Similar in some ways to a graph neural network (you can
think of nodes for fluents in the problem instance; the
operator description specifies connectivity (which other
fluents the new value of a fluent depends on) and
parameters (what those fluent values actually are.)

¢ Generalizes broadly
e Takes advantage of sparsity
¢ The effects of most actions don’t depend on most factor
values
¢ Relatively few factors are affected by any action
e Provides leverage for defining effective
domain-independent heuristics

6.0411/16.420 Fall 2023

20



Next time

e Powerful domain-dependent heuristics
e Actual PDDL syntax
e If time, Iterative Width planning

6.0411/16.420 Fall 2023

21



