
L03: Constraint Satisfaction

AIMA4e: Chapter 6

� Pseudocode in these notes is informal. See text for more
details.

6.0411/16.420 Fall 2023 1



What you should know after this lecture

• Definition of a constraint-satisfaction problem
• Solution strategies:

• Backtracking
• Forward checking and fancier consistency
• Learning within a problem
• Local search

• How to formulate a CSP

6.0411/16.420 Fall 2023 2



Factored states and information

Factored, discrete states
Factored “observations” as constraints

Inference about state based on certain observations
• State space is factored into a set of state variables
• Observations are constraints on (pieces of information

about) the values of those state variables
• Our objective is to figure out one or more possible states

that are consistent with the observations.
Inference doesn’t increase our information about the
underlying state—just processes it into a more useful form

6.0411/16.420 Fall 2023 3



Constraint-satisfaction problem: formal definition

• X is a set of variables {X1, . . . ,Xn}

• D is a set of domains {D1, . . . ,Dn}, where Di = {x1, . . . , xk}
is the set of possible values of Xi

• C is a set of constraints:
• scope : a tuple of variables
• relation : a relation specifying tuples of values that this

tuple of variables can legally take on

Define:
• assignment : mapping from variables to values
• partial assignment: only provides values for some variables
• consistent assignment : partial assignment that doesn’t

violate any constraints
• solution : complete assignment that doesn’t violate any

constraints
6.0411/16.420 Fall 2023 4



CSP Objectives

Three possible objectives:
1. Solution: find a satisfying assignment or prove one does

not exist.
2. All solutions: find all satisfying assignments.
3. Inference: conclude what values a variable must have.

Mostly we focus on solution but worth keeping the others in
mind.

� CSP is NP-Complete: time exponential in domain size
in worst case

6.0411/16.420 Fall 2023 5



Constraint-satisfaction problems: context

Why study CSP?
• A CSP formulation exposes structure in the problem that

enables efficient inference
• There are many professional, efficient CSP solvers
• There are lots of important problems that can be

formulated as CSP
• So, if you can formulate as a CSP, it can often be solved

efficiently

6.0411/16.420 Fall 2023 6



Factory problem

Objects:
• Machines: sander, painter, dryer
• Parts: p1, . . . ,p3

• Times: 1, . . . , 5
Constraints:
• Each part must be sanded before painted before dried.
• The sander and painter can each operate on at most one

part at a time.
• The sander can’t operate at the same time the dryer is

operating.
How can we formulate this as a CSP?

6.0411/16.420 Fall 2023 7



Variations on the theme

Theme: fixed number of variables with finite discrete domains
Variations:
• Infinite discrete domains
• Continuous domains

• With linear constraints == linear programming
Polynomial time in number of variables!

• Some other classes have good specialized solutions (e.g.,
quadratic programs)

• Getting all solutions
• Assigning costs and finding least cost solution ==

constrained optimization

6.0411/16.420 Fall 2023 8



Constraints

• Unary constraint only involves a single variable: use to
reduce the domain of that variable

• Binary constraint involves two variables (domains can be
any size). We will focus on binary constraints. Discussion
in book and HW problem on reducing higher-order
constraints to binary, and other ways of handling them.

Constraint (hyper)graph: useful to visualize constraint
structure

A

BF

E D

C A

B

F

E D

C

If it does not contain any loops, then there’s a cool, efficient
message passing algorithm.
6.0411/16.420 Fall 2023 9



Stupidest possible algorithm

stupid

for each possible assignment A:
if A does not violate any C ∈ C:

return A

return ’failed’

• How many A are there?
• Can we do better in the worst case?
• Can we do better in many cases?

6.0411/16.420 Fall 2023 10



Backtracking (= depth-first search)

a is an assignment, initially { }

backtrack(a)

if complete(a): return a

X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x})
r = backtrack(a)
if r , ’failed’: return r

remove(a, {X = x})
return ’failed’

Is this better than the stupidest possible algorithm?

6.0411/16.420 Fall 2023 11



Variable and value ordering

Dynamically, during search:
• variables: unassigned-var chooses the variable with the

fewest values in its domain
• values: domain-values orders values earlier that rule out

the fewest choices for variables it’s connected to in the
constraint graph

These will be especially useful in combination with some
inference methods.

6.0411/16.420 Fall 2023 12



Basic arc consistency: inference method

revise(Xi,Xj,Cij)
Given:
• Two variables: Xi and Xj with domains: Di and Dj

• Constraint Cij

Di := {xi ∈ Di | ∃xj ∈ Dj. (xi, xj) ∈ Cij}

Removes values from domain of Xi that are inconsistent with
values of domain of Xj.

� Usually, for efficiency, we implement with side effects.
Be careful to undo!

6.0411/16.420 Fall 2023 13



Forward checking

fc(X,a):
for Xi ∈ unassigned-var(a) ∩ neighbors(X)

revise(Xi,X)
if Di = { }: return ’failed’

backtrack-fc(a)

if complete(a): return a

X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x}); fc(X,a)
r = backtrack(a)
if r , ’failed’: return r

remove(a, {X = x}); undo-fc(X,a)
return ’failed’

6.0411/16.420 Fall 2023 14



Arc consistency

Can work harder to be sure that all arcs are consistent.
• See AC-3 alg in book.
• Roughly, keep doing revise until no domains change

further.
• Completely solves some problems.
• bt-ac3 often more expensive than bt-fc.
• Can extend the idea to making k-tuples (for k > 2) of

variables consistent.

6.0411/16.420 Fall 2023 15



Backjumping

Sometimes we have made a poor initial choice, but end up with
endlessly considering assignments to irrelevant variables.
• Whenever a dead-end occurs at variable X, backtrack to

the “most recent” variable that is connected to X in the
constraint graph.

• Can be very helpful!

� Requires careful bookkeeping to be sure all the right
assignments and inferences are undone.

AIMA4e asserts that any assignment that is pruned by
backjumping will also be pruned by forward-checking. Prove it
to yourself!

6.0411/16.420 Fall 2023 16


