
L03: Constraint Satisfaction

AIMA4e: Chapter 6

� Pseudocode in these notes is informal. See text for more
details.

6.0411/16.420 Fall 2023 1



What you should know after this lecture

• Definition of a constraint-satisfaction problem
• Solution strategies:

• Backtracking
• Forward checking and fancier consistency
• Learning within a problem
• Local search

• How to formulate a CSP
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Factored states and information

Factored, discrete states
Factored “observations” as constraints

Inference about state based on certain observations
• State space is factored into a set of state variables
• Observations are constraints on (pieces of information

about) the values of those state variables
• Our objective is to figure out one or more possible states

that are consistent with the observations.
Inference doesn’t increase our information about the
underlying state—just processes it into a more useful form
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Constraint-satisfaction problem: formal definition

• X is a set of variables {X1, . . . ,Xn}

• D is a set of domains {D1, . . . ,Dn}, where Di = {x1, . . . , xk}
is the set of possible values of Xi

• C is a set of constraints:
• scope : a tuple of variables
• relation : a relation specifying tuples of values that this

tuple of variables can legally take on

Define:
• assignment : mapping from variables to values
• partial assignment: only provides values for some variables
• consistent assignment : partial assignment that doesn’t

violate any constraints
• solution : complete assignment that doesn’t violate any

constraints
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CSP Objectives

Three possible objectives:
1. Solution: find a satisfying assignment or prove one does

not exist.
2. All solutions: find all satisfying assignments.
3. Inference: conclude what values a variable must have.

Mostly we focus on solution but worth keeping the others in
mind.

� CSP is NP-Complete: time exponential in domain size
in worst case
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Constraint-satisfaction problems: context

Why study CSP?
• A CSP formulation exposes structure in the problem that

enables efficient inference
• There are many professional, efficient CSP solvers
• There are lots of important problems that can be

formulated as CSP
• So, if you can formulate as a CSP, it can often be solved

efficiently
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Factory problem

Objects:
• Machines: sander, painter, dryer
• Parts: p1, . . . ,p3

• Times: 1, . . . , 5
Constraints:
• Each part must be sanded before painted before dried.
• The sander and painter can each operate on at most one

part at a time.
• The sander can’t operate at the same time the dryer is

operating.
How can we formulate this as a CSP?

6.0411/16.420 Fall 2023 7



Variations on the theme

Theme: fixed number of variables with finite discrete domains
Variations:
• Infinite discrete domains
• Continuous domains

• With linear constraints == linear programming
Polynomial time in number of variables!

• Some other classes have good specialized solutions (e.g.,
quadratic programs)

• Getting all solutions
• Assigning costs and finding least cost solution ==

constrained optimization
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Constraints

• Unary constraint only involves a single variable: use to
reduce the domain of that variable

• Binary constraint involves two variables (domains can be
any size). We will focus on binary constraints. Discussion
in book and HW problem on reducing higher-order
constraints to binary, and other ways of handling them.

Constraint (hyper)graph: useful to visualize constraint
structure
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If it does not contain any loops, then there’s a cool, efficient
message passing algorithm.
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Stupidest possible algorithm

stupid

for each possible assignment A:
if A does not violate any C ∈ C:

return A

return ’failed’

• How many A are there?
• Can we do better in the worst case?
• Can we do better in many cases?
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Backtracking (= depth-first search)

a is an assignment, initially { }

backtrack(a)

if complete(a): return a

X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x})
r = backtrack(a)
if r , ’failed’: return r

remove(a, {X = x})
return ’failed’

Is this better than the stupidest possible algorithm?
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Variable and value ordering

Dynamically, during search:
• variables: unassigned-var chooses the variable with the

fewest values in its domain
• values: domain-values orders values earlier that rule out

the fewest choices for variables it’s connected to in the
constraint graph

These will be especially useful in combination with some
inference methods.
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Basic arc consistency: inference method

revise(Xi,Xj,Cij)
Given:
• Two variables: Xi and Xj with domains: Di and Dj

• Constraint Cij

Di := {xi ∈ Di | ∃xj ∈ Dj. (xi, xj) ∈ Cij}

Removes values from domain of Xi that are inconsistent with
values of domain of Xj.

� Usually, for efficiency, we implement with side effects.
Be careful to undo!
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Forward checking

fc(X,a):
for Xi ∈ unassigned-var(a) ∩ neighbors(X)

revise(Xi,X)
if Di = { }: return ’failed’

backtrack-fc(a)

if complete(a): return a

X = unassigned-var(a)
for x ∈ domain-values(X):

if consistent(a, {X = x}):
extend(a, {X = x}); fc(X,a)
r = backtrack(a)
if r , ’failed’: return r

remove(a, {X = x}); undo-fc(X,a)
return ’failed’
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Arc consistency

Can work harder to be sure that all arcs are consistent.
• See AC-3 alg in book.
• Roughly, keep doing revise until no domains change

further.
• Completely solves some problems.
• bt-ac3 often more expensive than bt-fc.
• Can extend the idea to making k-tuples (for k > 2) of

variables consistent.
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Backjumping

Sometimes we have made a poor initial choice, but end up with
endlessly considering assignments to irrelevant variables.
• Whenever a dead-end occurs at variable X, backtrack to

the “most recent” variable that is connected to X in the
constraint graph.

• Can be very helpful!

� Requires careful bookkeeping to be sure all the right
assignments and inferences are undone.

AIMA4e asserts that any assignment that is pruned by
backjumping will also be pruned by forward-checking. Prove it
to yourself!
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