
L02 – Directed Search and Reward-based
Formulation

AIMA4e: Required: 3.5.1–4; 3.6.1–2; 5.4

6.0411/16.420 Fall 2022 1



What you should know after this lecture

• Informed search methods: GBFS and A*
• Heuristics and where to find them
• Reward-formulation problems; relation to min-cost-path
• Intro to Monte-Carlo Tree Search

6.0411/16.420 Fall 2022 2



Informed state-space search methods

• Without any hints at all about how to make progress toward a
goal state, we can’t do better than uniform-cost search.

• A heuristic function h : S→ R provides an estimate of the cost of
the least-cost path from a state s to a goal state. (In AIMA,
defined on nodes n, but really just applies to n.s).

• Standard example: Euclidean distance from s to a target
destination in a route-finding problem.

6.0411/16.420 Fall 2022 3



Recall best-first search framework

Best-First-Search(S,A, s0, T ,G,C, f)

1 n = Node(s0)
2 frontier = PriorityQueue(f)
3 frontier.add(n)
4 reached = {s0 : n}
5 while not frontier.empty():
6 n = frontier.pop() // Get node with lowest f value
7 s = n.s
8 if s ∈ G: return n
9 for a ∈ A: // Expand s

10 s ′ = T(s,a)
11 path cost = n.path cost + C(s,a, s ′)
12 if not s ′ ∈ reached or path cost < reached[s ′].path cost:
13 n ′ = Node(s ′,n,a, path cost)
14 reached[s ′] = n ′ // visit s ′

15 frontier.add(n ′)

6.0411/16.420 Fall 2022 4



Greedy best-first search (GBFS)

• Best-First-Searchwhere

f(n) = h(n.s)

• Always take the path out of frontier that we estimate has gotten
closest to the goal.

• Not guaranteed to find the least-cost path!
• Often finds a satisficing (goal-reaching) path much more quickly

than UCS.

6.0411/16.420 Fall 2022 5



A*
• Best-First-Searchwhere

f(n) = n.path cost + h(n.s)

• Always take the path out of frontier that we estimate has the
cheapest sum of the length of the path so far and our estimate of
how for from here to the goal.

• Guaranteed to find a least-cost path if h is admissible.
• Heuristic h is admissible iff

h(s) 6 h∗(s) for all s ∈ S,

where h∗(s) is the actual least path cost from s to a goal state.
• If h is consistent, we can remove the second part of the test in

line 12, because we always reach a state first via a least-cost path.
• Heuristic h is consistent iff

h(s) 6 c(s,a, s ′) + h(s ′)
6.0411/16.420 Fall 2022 6



More about A*

• Search contours are “stretched” in the direction of goal states.
• Let C∗ be cost of optimal solution path:

• A* expands all nodes reachable from s0 on a path where every
node on the path has f(n) < C∗

• A* expands no nodes with f(n) > C∗

• If h(s) = h∗(s) then A* will not expand any nodes that are not on
an optimal path.

• If h(s) is close to h∗(s) then there will generally not be many
nodes for which f(n) 6 C∗.

• If h(s) = 0 then h is admissible; in this case, A* degenerates into
UCS.

6.0411/16.420 Fall 2022 7



Heuristic Functions

• A heuristic function, ideally, is:
• Admissible and consistent
• Close to h∗
• Efficient to compute

• A good source of heuristics is problem relaxation: make your
problem “easier” in two ways:
• Solutions have lower cost in relaxed problem
• Solutions are faster to find in relaxed problem

• Examples:
• Relax problem of finding a path on a road-map to finding one that

can go off-road.
• Relax problem of finding a driving route that lets you keep the car

fueled to one in which you ignore fuel.

• Another strategy: learn h (perhaps in the form of a neural
network) using supervised or reinforcement-learning based on
previous experience solving related problems.

6.0411/16.420 Fall 2022 8



Reward-maximization formulation

Some problems are easier for formulate in terms of maximizing an
amount of reward that gets accumulated over a trajectory of a fixed
number of steps (horizon) H.
• Problem: (S,A, T ,R,H, s0)

• Reward instead of cost: R : S×A→ R
• We want to find a length H path that maximizes

H−1∑
t=0

R(st,at, st+1)

• We can relax this fixed-horizon assumption later in the course,
with a probabilistic model of termination.

6.0411/16.420 Fall 2022 9



Reduction from reward maximization to
min-cost-path problem

Given reward maximization problem (S,A, T ,R,H, s0) we can
generate min-cost-path problem (S ′,A ′, T ′,G,C, s ′o) so that solution
to the min-cost-path problem is a solution to the original
reward-maximization problem.
• S ′ = S× {0, . . . ,H}
• A ′ = A

• s ′0 = (s0,H) second component is “steps to go”
• T ′((s, t),a) = (T(s,a), t− 1)
• G = {(s, t) | t = 0}
• C(s,a) = Rmax − R(s,a) where Rmax = maxs,a R(s,a)

Note that costs are always non-negative.
We can solve using uniform-cost search!
Very hard to come up with a heuristic, since in principle, it might be
possible for all the rest of your actions to pay off with Rmax which
would have a C of 0, meaning to be admissible, we need h = 0.
6.0411/16.420 Fall 2022 10



Reduction from min-cost-path to
reward maximization

Given a min-cost-path problem (S,A, T ,G,C, so) we can generate a
reward maximization problem (S ′,A ′, T ′,R,H, s ′0) so that solution to
the min-cost-path problem is a solution to the original
reward-maximization problem.
• S ′ = S× {over}
• A ′ = A
• s ′0 = s0

•

T ′(s,a) =

{
T(s,a) if s < G and s , over
over otherwise

• R(s,a, s ′) = −C(s,a, s ′) if s ′ , over else 0
Setting H is tricky:
• Could keep trying to re-solve with increasing H.
• You can do MCTS (or some other solution methods) on indefinite

horizon problems, where instead of having a fixed horizon H,
there are states marked as terminal and the “rollout” ends when
one is reached (but you *still* need a max horizon in practice).

6.0411/16.420 Fall 2022 11



Monte-Carlo Tree Search

Another strategy for search guidance is to “learn” from your current
search.
• Rather than systematically growing the tree, consider whole

paths from s0 to horizon
• Assumes smoothness: paths with the same first action(s) will

tend to have similar values
• If your problem is smooth, and, so far, paths starting with a1

have had higher total reward than paths starting with a2, then
spend more time investigating paths starting with a1!

• Particularly useful when no other heuristic is available and/or
action space (hence branching factor) is very large.

• Used in games and probabilistic problems, as well.
• Assumes rewards in range [0, 1]. (Optimal policy is unchanged if

we scale current rewards linearly to be in this range.)

6.0411/16.420 Fall 2022 12



Upper confidence bounds

Consider a situation in which you are trying to select among K
actions, a1, . . . ,ak. Assume:
• You have, so far, executed N total actions
• You have, so far, executed action k for Nk trials
• The total utility you got for executing action k is Uk

What is an optimistic but realistic upper bound on the value of
executing action k?

ucb(N,Nk,Uk) =

{
Uk

Nk
+ C

√
logN
Nk

if Nk > 0∞ otherwise

If individual utility values are in range [0, 1] then a reasonable choice
is C = 1.4. (Lots of interesting theory behind this!)

6.0411/16.420 Fall 2022 13



Simple MCTS example
• We first pick a1 and get value 0.9:

ucb(s0,a1) = .9 +
√

log 1/1 ≈ 0.9 ucb(s0,a2) =∞
• Pick a2 and get value 0.1:

ucb(s0,a1) = .9 +
√

log 2/1 ≈ 1.73 ucb(s0,a2) = .1 +
√

log 2/1 ≈ .93

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 3/2 ≈ 1.64 ucb(s0,a2) = .1 +
√

log 3/1 ≈ 1.15

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 4/3 ≈ 1.58 ucb(s0,a2) = .1 +
√

log 4/1 ≈ 1.28

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 5/4 ≈ 1.53 ucb(s0,a2) = .1 +
√

log 5/1 ≈ 1.37

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 6/5 ≈ 1.50 ucb(s0,a2) = .1 +
√

log 6/1 ≈ 1.44

• Pick a1 and get value 0.9 again:

ucb(s0,a1) = .9 +
√

log 7/6 ≈ 1.47 ucb(s0,a2) = .1 +
√

log 7/1 ≈ 1.49

• Woo hoo! Pick a2! Maybe it’s awesome!
6.0411/16.420 Fall 2022 14



Monte-Carlo Tree Search

MCTS(s0, (A, T ,R,H), iters)
1 root = Node(s0, horizon = H, parent = None, children = { },U = 0,N = 0)
2 for iter ∈ {1, . . . , iters}:
3 leaf = select(root)
4 child = expand(leaf ,A, T)
5 value = simulate(child,A, T ,R)
6 backup(child, value)
7 max child = max(root.children, key = λn. n.U/n.N)
8 return root.children[max child] // Returns the associated action

select(n)

// Follow optimistically best path through tree
1 if n.children
2 return select(max(n.children, key = λc.ucb(n.N, c.N, c.U))
3 else
4 return n

6.0411/16.420 Fall 2022 15



Monte-Carlo Tree Search (Cont)

expand(n,A,T)
// Unless remaining horizon is 0, add child nodes and return one

1 if n.horizon = 0:
2 return n
3 else
4 for a ∈A:
5 s ′ = T(n.s,a)
6 n ′ = Node(s ′,n.horizon − 1, parent = n, children = { },U = 0,N = 0)
7 n.children[n ′] = a
8 return random choice(n.children)

simulate(n,A,T ,R)
// Randomly finish path and return cumulative reward

1 s = n.s; total reward = 0
2 for h ∈ (n.horizon, . . . , 1):
3 a = random choice(A)
4 s ′ = T(s,a)
5 total reward += R(s,a,s ′)
6 s = s ′

7 return total reward

6.0411/16.420 Fall 2022 16



Monte-Carlo Tree Search (Cont)

backup(n, v below)

// Add value v to n’s statistics and pass it up
1 n.N += 1
2 if n.parent:
3 a = n.parent.children[n] // Action that led to n
4 v = v below + R(n.parent.s,a,n.s) // Value of executing a in parent
5 n.U += v
6 backup(n.parent, v)

• Guaranteed to (eventually) find optimal strategy with
probability 1, for appropriate choice of C

• Instead of random “rollouts”, you can use a semi-smart strategy,
or a (learned) heuristic value function

• This is (roughly) what Alpha-Go does

6.0411/16.420 Fall 2022 17



Reading and next time

• Read about satisficing (AIMA 3.5.4)
• Next time!

• Finish up MCTS if we need time
• Making an agent
• Conformant planning
• Contingent planning

6.0411/16.420 Fall 2022 18


