L01 — Introduction and State-Space Search

AIMA4e: Required: Ch 3.1-3.4; Optional: Ch 1, 2
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What you should know after this lecture

Basic logistics of 6.4110/16.420 Fall 2023
The Rational-Agent view of Al

Agent domains and where to find them

State-space search
¢ Minimizing additive path cost
¢ Importance of avoiding redundant paths
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6.4110/16.420 Course logistics

Lecture: M, W 9:30 - 11
Optional problem-solving sessions: Fridays at 11 (starting 9/15)
Graduate extra meeting: Fridays at 10
Staff:

¢ Leslie Kaelbling (1pk@nmit.edu)

¢ Nick Roy (nickroy@mit.edu)

e Laura Brandt (lebrandt@mit.edu)

¢ Annie Feng (TA, azf@mit.edu)

e Elizabeth Lee (TA, jelizlee@mit.edu)

e Julian Yocum (TA, juliany@mit.edu)
cat-soop: https://airr.mit.edu
Piazza: Ask all questions here. Can be private to staff.
Exams: Midterm October 30, in class; Final time TBD
Homework: Weekly via cat-soop due Mondays 11PM
Mini-projects: Added content for students in 16.420
Collaboration: Homework and MPs are for learning; fine to
study together but be sure to answer independently
More info (grading, extensions, office hours) on cat-soop
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Course content

e Preregs:

¢ Probability (discrete and continuous)
¢ Algorithms and Python (you can confidently go from pseudo-code
to implementation and debug systematically)

¢ Focus on knowledge representation and reasoning methods of Al
e Complementary to machine learning
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We like books!

o Artificial Intelligence: A Modern Approach (AIMA4e),
Russell and Norvig aima.cs.berkeley.edu

o Algorithms for Decision Making, (KAlg),
Kochenderfer algorithmsbook.com
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Agents

Dbeeryaki @(
>ac—¥\m

w or\

e agent: program with an ongoing feedback connection to an
external environment (e.g., robot, smart house, Siri, banking
advisor)

e generally t: (O, A)* — A is a program with “state” or
“memory” that maps the history of actions and observations to
the next action
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Modeling the environment for an agent

This is the most general case—we’ll consider some simplifications
8 : set of world states

A : set of actions of the agent

O : set of possible observations the agent can make

P(S¢i1]St, Ay) : transition model : distribution over the world
state at time t + 1 given the world state at time t and the action
taken by the agent at time t

P(O¢ | St) : observation model : distribution over observations
the agent might make at time t given the world state at time t
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Policies for agents

How can we (engineers or nature) find a good policy for an agent?

A policy is allowed to have memory—it could perform learning or
search or solve differential equations or be made out of rubber bands.
Anything (physically realizable) is fair as long as it maps histories of
observations into the next action.

¢ Assume we have a specification (or a lot of examples) of a
distribution of worlds where our agent is supposed to operate

¢ Assume also an objective function that measures how well the
policy is performing

¢ Our job as engineers is to find the best policy, in expectation over
possible environments, for this agent. But, how?
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How to design policies for agents?

1. Be really smart, think hard, and write a program.
2. Systems-level “offline” rational design
¢ Write down space of solutions
¢ Write down objective function
¢ Use search algorithm to find good solution
Most applications of reinforcement learning fit here
3. Design of agent that is rational “online”
¢ Be somewhat smart and construct a program for a rational agent
that:
e represents its knowledge about the environment and
¢ reasons about what actions to take
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Rational agents

Principle of rationality: Select actions that will maximize expected

future utility
¢ expected: take expectations over uncertainty about current
environment state and/or outcomes of actions

¢ future: will consider one-step, finite, and infinite future horizons

e utility: Assume the agent has a scalar measure of utility or
desirability of states of the external environment

Rationality is not the same as:
¢ omniscience or clairvoyance

® success
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Representation and reasoning

¢ Representation: information stored in a computer—specific to
the problem at hand
¢ syntax: a “language” for encoding information in a computer
¢ semantics: an intended relationship between a piece of syntax
inside the machine and the state of the world outside the machine

¢ Reasoning: (inference) semantics-preserving manipulation of a
syntactic representation—general-purpose, domain-independent

¢ Given observations and prior knowledge, make conclusions about
the world state and, from there, about which action to select.
¢ Planning, specifically, is reasoning about action sequences.

“All our knowledge begins with the senses, proceeds then to the
understanding, and ends with reason. There is nothing higher than
reason.” —Kant
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Compositional representation

A compositional representation has:

¢ syntax that is formed from a small set of primitive components
and a set of rules for putting them together

¢ semantics: meaning of a the whole representation can be formed
by combining meanings of the components

“The infinite use of finite means.” —Alexander von Humboldt, on

language
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Representation and reasoning

Knowing some information about:
e Current world state
¢ Transition model
e Objective

Infer one or more of:
¢ Some aspect of world state

e What action to take next

Methods depend on
¢ How much information is known about current and future states

¢ Representational method

deterministic / path search IW planning .
full information MCTS constraint sat PRI enTing
inisti CEIHENT ropositional
no:t—vdle.tefrrnlnlstt.lc/ conditional P p\ogic FOND planning | first-order logic
partial information I
E m continuous
" probabilistic e
robabilistic MDPs prob graphical relational probabilistic
p POMDPs models logic
models discrete
atomic factored relational first order 13
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Representation styles

How do we describe a state?

e atomic: s44 (element of some enumeration)

o factored: (4,5.2," hippo’) (vector of attributes)

e relational: {bigger(o+, 02), resting(02, 02), size(o1) = 3.2}
(set of properties and relations on “objects”; also, interpretable as
a graph)

o first-order: all the bacteria in the jar are dead
Vx.bacterium(x) N in(x, jar) — dead(x)

Different representations offer different opportunities for
¢ Expressing partial information

e Generalization
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Connections to machine learning

Machine learning is everywhere! Probably most of you have studied
it in some form. Many connections to what we will be studying:

¢ Learning the models / “knowledge” that our search or inference
algorithms operate on

¢ Learn heuristics or other search control information to speed up
computation

¢ Learn problem-specific functions for quickly computing
solutions to a space of common queries

Trade-offs between model-based and model-free methods
¢ Model-based often generalizes much more effectively
¢ Model-free method not hampered by poor choices of model
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First problem setting: fully observable, deterministic

Atomic, discrete
¢ Agent knows:
e State set: 8
Initial state: sg
Action set: A
Transition model: T: 8§ x A — 8§
Goal set: G C 8
e CostfunctionC:8 x A x 8 =+ R
e We need to find next action to take
¢ Find plan ay, ..., anm from sg to some state in G such that
T(sp,a1) =81,..., T(Sm_1,am) =Smand s, € G
e Usually we try to minimize

D Clsi, ai,si44)

If path costs are not additive, then many algorithmic tricks don’t
sonndPRly,Aand problem is harder.
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Measuring problem-solving performance

e Completeness: If there is a solution to your problem, is the
algorithm guaranteed to find it?

o Cost optimality: If there is a solution, is the algorithm
guaranteed to find the solution with the lowest cost?

o Computational complexity: As the size of the problem grows,
how do the computation and time and space requirements grow?
The answer to this depends on how we encode the input!

¢ In CS algorithms tradition, problems are described as graph search
problems, and complexity is characterized in terms of the number
of vertices (states) and edges in the graph; usually nearly linear in
the size of the input.

¢ In our applications, we will often have a huge or even infinite S but
it is not input to the algorithm. Instead, we provide so and T, and
incrementally expose the graph as we search. Characterize
complexity in terms of branching factor |A| and depth (also called
“horizon” or “plan-length.”) Usually exponential in the horizon.
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Best-first search framework

o Critical to make a distinction between state (element of §) and
node of the search tree, which represents a path from sq to some
state s. (Every search node has an associated state. It is possible
to have multiple nodes with the same state (representing
different paths to reach that state.)

e This framework takes a priority function f. Different values of f
will yield different search algorithms.
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Best-first search framework

Best-FirsT-SEARCH(S, A, 80, T, G, C, f)
1 m = Nobg(sp)
2 frontier = PRIORITYQUEUE()
3 frontier.app(n)
4 reached = {so : n}
5 while not frontier. EMPTY():

6 n = frontier.rop() // Get node with lowest f value
7 s =Tm.s
8 if s € G: return n
9 fora c A: // Expand s
10 s’ =T(s,a)
11 path_cost = n.path_cost + C(s, a,s’)
12 if not s’ € reached or path_cost < reached(s’].path_cost:
13 n’ = Nobg(s’,n, a, path_cost)
14 reached[s’] = n’ // visit s’
15 frontier.app(n’)

6.0411/16.420 Fall 2023 19



Redundant Paths

o Stupidest possible algorithm (SPA): enumerate all legal paths
and pick the first one that reaches a goal state.

¢ There can be exponentially more paths than states!

e The reached data structure (sometimes called a visited list) and
test in line 12 ensures that we never consider a path to a state that
is higher in cost than the best one we’ve already found.

¢ In most of the searches we’ll consider, in fact, we can prove that
the first time we pop some path to a state off the frontier, we will
have done so via a least-cost path, and so we never expand
(consider the successor of) a state more than once.
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Breadth-First Search

Best-first with f(n) = number of steps in path n
First path found to s has fewest steps

Can actually move the goal test earlier (from s in line 8 to s’ just
after line 10)

Complete and optimal (in number of steps)

Worst case time (and space) complexity O(|A|¢) where d is the
length of the shortest path to the goal. This happens when there
are no redundant paths.

Note independence of |$|

But, complexity is also bounded by O(|$]|A]) which in some
problems is smaller than |44
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Uniform Cost Search

Best-first search with f(n) = n.path_cost
Assume costs are all positive.

Like breadth-first, but pushes out frontier in equal-path-cost
contours

First path to s expanded has least cost.

First path to s visited does not necessarily have least cost. See
text for example of this, and why we cannot move the goal test
earlier.

Worst case time (and space) complexity

O(|A|1+LC*/eJ)

where C* is the cost of the least-cost path and e is the cost of the
least-cost action.

Sometimes called Dijkstra’s Algorithm (although Dijkstra’s is
often used to compute shortest paths to all vertices in a given
finite graph.)

As with BFS, complexity is also bounded by O(|8||Allog|S]) .
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Reading and next time

¢ Read about depth-first search (AIMA 3.4.3) and iterative
deepening (AIMA 3.4.4)
e Next time!

¢ Informed search methods
¢ Monte-Carlo tree search
¢ Problems described in terms of rewards instead of costs and goal

6.0411/16.420 Fall 2023 23



